Broken versus Non-Broken Time Reversal Symmetry: Irreversibility and Response

We review some approaches to macroscopic irreversibility from reversible microscopic dynamics, introducing the contribution of time dependent perturbations within the framework of recent developments in non-equilibrium statistical physics. We show that situations commonly assumed to violate the time reversal symmetry (presence of magnetic fields, rotating reference frames, and some time dependent perturbations) in reality do not violate this symmetry, and can be treated with standard theories and within standard experimental protocols.

[1]  Debra J. Searles,et al.  The Fluctuation Theorem , 2002 .

[2]  J. Lebowitz,et al.  Is Boltzmann Entropy Time's Arrow's Archer? , 1994 .

[3]  A. Vulpiani,et al.  Reductionism, Emergence and Levels of Reality: The Importance of Being Borderline , 2014 .

[4]  A. Vulpiani,et al.  The role of the number of degrees of freedom and chaos in macroscopic irreversibility , 2015, 1509.03823.

[5]  Leon Cohen,et al.  The history of noise , 2004, SPIE International Symposium on Fluctuations and Noise.

[6]  David Z. Albert,et al.  Time and Chance , 2000 .

[7]  P. McClintock Chaos and coarse graining in statistical mechanics. , 2010 .

[8]  L. Rondoni,et al.  Equilibrium, fluctuation relations and transport for irreversible deterministic dynamics , 2011, 1111.3264.

[9]  Stephen R. Williams,et al.  On the fluctuation theorem for the dissipation function and its connection with response theory. , 2008, Journal of Chemical Physics.

[10]  Joel L. Lebowitz,et al.  Boltzmann's Entropy and Time's Arrow , 1993 .

[11]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[12]  Evans,et al.  Probability of second law violations in shearing steady states. , 1993, Physical review letters.

[13]  S. Goldstein,et al.  Is the Hypothesis About a Low Entropy Initial State of the Universe Necessary for Explaining the Arrow of Time , 2016, 1602.05601.

[14]  D. Searles,et al.  The Steady State Fluctuation Relation for the Dissipation Function , 2007, 0709.1327.

[15]  R. Hentschke Non-Equilibrium Thermodynamics , 2014 .

[16]  John Stillwell,et al.  Symmetry , 2000, Am. Math. Mon..

[17]  P. Gaspard Multivariate fluctuation relations for currents , 2013 .

[18]  C. Landim,et al.  Onsager Symmetry from Microscopic TP Invariance , 1999 .

[19]  B. Blank,et al.  The Road to Reality : A Complete Guide to the Laws of the Universe , 2006 .

[20]  J. Barbour,et al.  Identification of a gravitational arrow of time. , 2014, Physical review letters.

[21]  Lamberto Rondoni,et al.  Deterministic thermostats, theories of nonequilibrium systems and parallels with the ergodic condition , 2010 .

[22]  Itamar Pitowsky,et al.  Typicality and the Role of the Lebesgue Measure in Statistical Mechanics , 2012 .

[23]  G. Prodi,et al.  Nonequilibrium steady-state fluctuations in actively cooled resonators. , 2009, Physical review letters.

[24]  Leon Cohen,et al.  The history of noise [on the 100th anniversary of its birth] , 2005, IEEE Signal Processing Magazine.

[25]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[26]  Gary P. Morriss,et al.  Statistical Mechanics of Nonequilibrium Liquids , 2008 .

[27]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[28]  R. Kubo Statistical Physics II: Nonequilibrium Statistical Mechanics , 2003 .

[29]  A. Khinchin Mathematical foundations of statistical mechanics , 1949 .

[30]  S. Goldstein Typicality and Notions of Probability in Physics , 2012 .

[31]  Roger Penrose,et al.  A complete guide to the laws of the universe , 2005 .

[32]  C. Lazzaro,et al.  Thermal noise of mechanical oscillators in steady states with a heat flux. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  L. Rondoni,et al.  A dynamical-systems interpretation of the dissipation function, T-mixing and their relation to thermodynamic relaxation , 2016 .

[34]  On Typicality in Nonequilibrium Steady States , 2016, 1602.05808.