Compressed sensing Petrov-Galerkin approximations for parametric PDEs
暂无分享,去创建一个
Holger Rauhut | Christoph Schwab | Jean-Luc Bouchot | H. Rauhut | C. Schwab | Jean-Luc Bouchot | Benjamin Bykowski | Benjamin Bykowski
[1] R. DeVore,et al. Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs , 2010 .
[2] Christoph Schwab,et al. QMC Galerkin Discretization of Parametric Operator Equations , 2013 .
[3] H. Rauhut,et al. Interpolation via weighted $l_1$ minimization , 2013, 1308.0759.
[4] R. DeVore,et al. A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .
[5] Holger Rauhut,et al. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations , 2014, Math. Comput..
[6] Christoph Schwab,et al. Analytic regularity and nonlinear approximation of a class of parametric semilinear elliptic PDEs , 2013 .
[7] Christoph Schwab,et al. Sparse, adaptive Smolyak quadratures for Bayesian inverse problems , 2013 .
[8] 慧 廣瀬. A Mathematical Introduction to Compressive Sensing , 2015 .
[9] Albert Cohen,et al. Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs , 2010, Found. Comput. Math..
[10] Andrea Barth,et al. Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients , 2011, Numerische Mathematik.
[11] Houman Owhadi,et al. A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..