A new clustering approach using data envelopment analysis

In this paper, we present a new clustering method that involves data envelopment analysis (DEA). The proposed DEA-based clustering approach employs the piecewise production functions derived from the DEA method to cluster the data with input and output items. Thus, each evaluated decision-making unit (DMU) not only knows the cluster that it belongs to, but also checks the production function type that it confronts. It is important for managerial decision-making where decision-makers are interested in knowing the changes required in combining input resources so it can be classified into a desired cluster/class. In particular, we examine the fundamental CCR model to set up the DEA clustering approach. While this approach has been carried for the CCR model, the proposed approach can be easily extended to other DEA models without loss of generality. Two examples are given to explain the use and effectiveness of the proposed DEA-based clustering method.

[1]  Wade D. Cook,et al.  Performance measurement and classification data in DEA: Input-oriented model , 2007 .

[2]  R. Lippmann,et al.  An introduction to computing with neural nets , 1987, IEEE ASSP Magazine.

[3]  N. Petersen,et al.  Chance constrained efficiency evaluation , 1995 .

[4]  M. Farrell The Measurement of Productive Efficiency , 1957 .

[5]  Abraham Charnes,et al.  Cone ratio data envelopment analysis and multi-objective programming , 1989 .

[6]  Kristiaan Kerstens,et al.  Bank Productivity and Performance Groups: A Decomposition Approach Based Upon the Luenberger Productivity Indicator , 2011, Eur. J. Oper. Res..

[7]  William W. Cooper,et al.  Chapter 13 Satisficing DEA models under chance constraints , 1996, Ann. Oper. Res..

[8]  Zhimin Huang,et al.  Determining rates of change in data envelopment analysis , 1997 .

[9]  Patrick L. Brockett,et al.  Identification of Pareto-efficient facets in data envelopment analysis , 1998, Eur. J. Oper. Res..

[10]  Andreas Kleine,et al.  A general model framework for DEA , 2004 .

[11]  Kenneth C. Land,et al.  Productive Efficiency under Capitalism and State Socialism: An Empirical Inquiry Using Chance-Constrained Data Envelopment Analysis , 1994 .

[12]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[13]  William W. Cooper,et al.  Chance constrained programming approaches to technical efficiencies and inefficiencies in stochastic data envelopment analysis , 2002, J. Oper. Res. Soc..

[14]  F. Hosseinzadeh Lotfi,et al.  Finding strong defining hyperplanes of Production Possibility Set , 2007, Eur. J. Oper. Res..

[15]  A. Charnes,et al.  Invariant multiplicative efficiency and piecewise cobb-douglas envelopments , 1983 .

[16]  Barton A. Smith,et al.  Comparative Site Evaluations for Locating a High-Energy Physics Lab in Texas , 1986 .

[17]  Andrew R. Webb,et al.  Statistical Pattern Recognition , 1999 .

[18]  A. Charnes,et al.  A multiplicative model for efficiency analysis , 1982 .

[19]  S. Grossberg,et al.  Adaptive pattern classification and universal recoding: I. Parallel development and coding of neural feature detectors , 1976, Biological Cybernetics.

[20]  Miin-Shen Yang,et al.  Alternative c-means clustering algorithms , 2002, Pattern Recognit..

[21]  William W. Cooper,et al.  Evaluating Program and Managerial Efficiency: An Application of Data Envelopment Analysis to Program Follow Through , 1981 .

[22]  Abraham Charnes,et al.  Data Envelopment Analysis and Axiomatic Notions of Efficiency and Reference Sets. , 1987 .

[23]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  A. U.S.,et al.  Measuring the efficiency of decision making units , 2003 .

[25]  Fei Yang,et al.  Data envelopment analysis for assessing optimal operation of an immersed membrane bioreactor equipped with a draft tube for domestic wastewater reclamation , 2007 .

[26]  Gang Yu,et al.  Construction of all DEA efficient surfaces of the production possibility set under the Generalized Data Envelopment Analysis Model , 1996 .

[27]  M. Farrell,et al.  THE MEASUREMENT OF PRODUCTIVITY EFFICIENCY , 1957 .

[28]  P. Andersen,et al.  A procedure for ranking efficient units in data envelopment analysis , 1993 .

[29]  William W. CooperKyung IDEA and AR-IDEA: Models for Dealing with Imprecise Data in DEA , 1999 .

[30]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[31]  Geoffrey J. McLachlan,et al.  Mixture models : inference and applications to clustering , 1989 .

[32]  James C. Bezdek,et al.  Fuzzy Kohonen clustering networks , 1994, Pattern Recognit..

[33]  Boaz Golany,et al.  Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions , 1985 .

[34]  A. Charnes,et al.  Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis , 1984 .

[35]  A. Charnes,et al.  Polyhedral Cone-Ratio DEA Models with an illustrative application to large commercial banks , 1990 .

[36]  Shabnam Razavyan,et al.  A one-model approach to classification and sensitivity analysis in DEA , 2005, Appl. Math. Comput..

[37]  Miin-Shen Yang A survey of fuzzy clustering , 1993 .

[38]  Russell G. Thompson,et al.  DEA/AR profit ratios and sensitivity of 100 large U.S. banks , 1997 .

[39]  Risto Lahdelma,et al.  Stochastic multicriteria acceptability analysis using the data envelopment model , 2006, Eur. J. Oper. Res..

[40]  Vincent Kanade,et al.  Clustering Algorithms , 2021, Wireless RF Energy Transfer in the Massive IoT Era.

[41]  Rajesh N. Davé,et al.  Robust clustering methods: a unified view , 1997, IEEE Trans. Fuzzy Syst..

[42]  William W. Cooper,et al.  Choosing weights from alternative optimal solutions of dual multiplier models in DEA , 2007, Eur. J. Oper. Res..

[43]  W. Peizhuang Pattern Recognition with Fuzzy Objective Function Algorithms (James C. Bezdek) , 1983 .

[44]  Lawrence M. Seiford,et al.  Recent developments in dea : the mathematical programming approach to frontier analysis , 1990 .

[45]  Jean-Michel Jolion,et al.  Robust Clustering with Applications in Computer Vision , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  Arnold Reisman,et al.  A taxonomy for data envelopment analysis , 2004 .

[47]  Vivian Li,et al.  Socio-economic determinants of HIV/AIDS pandemic and nations efficiencies , 2007, Eur. J. Oper. Res..

[48]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[49]  Kuo-Ping Chang,et al.  Linear production functions and the data envelopment analysis , 1991 .

[50]  Joe Zhu,et al.  Imprecise data envelopment analysis (IDEA): A review and improvement with an application , 2003, Eur. J. Oper. Res..

[51]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[52]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[53]  Shanling Li,et al.  A super-efficiency model for ranking efficient units in data envelopment analysis , 2007, Appl. Math. Comput..

[54]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .