NMR Approach to the kinetics of polymer crystallization. II. Polydimethylsiloxane solutions

The dilution effect on the crystallization kinetics of PDMS/toluene solutions, ranging from a polymer volume fraction of ϕ = 1.00 (pure PDMS) to ϕ = 0.32, was studied using 1H high-power NMR. Spin-spin magnetic response was analyzed into relaxation components, arising from the different phases of the semicrystalline sample, through a spin-echo technique. The intensity and shape of the amorphous component provide relevant information concerning (1) the global crystallization process and (2) the state of hindrance of the amorphous chains induced by the growing crystalline domains. It was shown that, in solutions, the main effect on the crystallization kinetics of changing concentration is to depress the equilibrium melting temperature of the system. However, a radically distinct crystallization rate between the pure and the more concentrated system must be explained in terms of the activation energy for interphase chain transport. Thermodynamic parameters of PDMS crystallites were also deduced from a model. Comparison between the isothermal development of the overall crystallinity and the variation of a characteristic relaxation time of the amorphous PDMS proton response gives an insight into the relative predominance of nucleation or growth rates in the crystallization mechanisms.