Comparison of 4.5–6 μm luminescent and lasing properties of rare earth dopants in chalcogenide glasses

[1]  V. Shiryaev,et al.  Core-clad terbium doped chalcogenide glass fiber with laser action at 5.38 μm , 2021 .

[2]  M. Frolov,et al.  Mid-infrared laser performance of Ce3+-doped selenide glass. , 2021, Optics express.

[3]  V. Kozlovsky,et al.  Resonantly pumped Ce3+ mid-infrared lasing in selenide glass. , 2021, Optics letters.

[4]  S. Phang,et al.  Room temperature mid-infrared fiber lasing beyond 5  µm in chalcogenide glass small-core step index fiber. , 2021, Optics letters.

[5]  M. F. Churbanov,et al.  Laser potential of Pr3+ doped chalcogenide glass in 5-6 μm spectral range , 2021 .

[6]  M. F. Churbanov,et al.  Cascade sensitization of mid-infrared Ce3+ luminescence by Dy3+ ions in selenide glass , 2021 .

[7]  V. Kozlovsky,et al.  Efficient Fe:CdTe laser producing 0.35 J pulses in the 5 µm spectral range. , 2020, Optics letters.

[8]  N. S. Zernova,et al.  Distribution of elements in Ge–Se bulk glasses and optical fibers detected by inductively coupled plasma atomic emission spectrometry , 2020 .

[9]  V. G. Plotnichenko,et al.  First demonstration of ~ 5 µm laser action in terbium-doped selenide glass , 2020, Applied Physics B.

[10]  V. Kozlovsky,et al.  Tunable in the range of 4.5-6.8 µm room temperature single-crystal Fe:CdTe laser pumped by Fe:ZnSe laser. , 2020, Optics express.

[11]  V. Nazabal,et al.  Dy3+ doped GaGeSbSe fiber long-wave infrared emission , 2020, Journal of Luminescence.

[12]  M. F. Churbanov,et al.  Preparation of REE-doped Ge-based chalcogenide glasses with low hydrogen impurity content , 2019 .

[13]  M. F. Churbanov,et al.  Peculiarities of 16-75 µm Pr3+ luminescence in Ge36Ga5Se59 glass , 2019, Optical Materials Express.

[14]  M. Churbanov,et al.  New approach for preparation of high-purity sulfide-germanium glasses doped with praseodymium , 2019, Optical Materials Express.

[15]  Helena Jelínková,et al.  Fe:CdMnTe laser generating 5.4 - 6 μm radiation , 2019, LASE.

[16]  Samuel Poulain,et al.  Room-temperature fiber laser at 392  μm , 2018, Optica.

[17]  Jonathan W. Evans,et al.  Demonstration and power scaling of an Fe:CdMnTe laser at 52 microns , 2017 .

[18]  V. Kozlovsky,et al.  Fe2+-doped CdSe single crystal: growth, spectroscopic and laser properties, potential use as a 6 µm broadband amplifier , 2017 .

[19]  V. Kozlovsky,et al.  Laser radiation tunable within the range of 4.35–5.45 μm in a ZnTe crystal doped with Fe2+ ions , 2011 .

[20]  N. V. Lichkova,et al.  Optical spectroscopy of the RbPb 2 Cl 5 :Dy 3+ laser crystal and oscillation at 5.5 μm at room temperature , 2007 .

[21]  Roland Martin,et al.  Experimental evidence of the validity of the McCumber theory relating emission and absorption for rare-earth glasses , 2006 .

[22]  Rodica M. Martin,et al.  Reciprocity between Emission and Absorption for Rare Earth Ions in Glass , 2006 .

[23]  Leslie Brandon Shaw,et al.  Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber , 2001 .

[24]  Joseph Ganem,et al.  Infrared laser characteristics of praseodymium-doped lanthanum trichloride , 1994 .

[25]  R. S. Quimby,et al.  General procedure for the analysis of Er(3+) cross sections. , 1991, Optics letters.

[26]  D. Mccumber,et al.  Einstein Relations Connecting Broadband Emission and Absorption Spectra , 1964 .