Distribution of zeros of matching polynomials of hypergraphs

. Let H be a connected k -graph with maximum degree ∆ ≥ 2 and let µ ( H , x ) be the matching polynomial of H . In this paper, we devote to studying the distribution of zeros of the matching polynomials of k -graphs. We prove that the zeros (with multiplicities) of µ ( H , x ) are invariant under a rotation of an angle 2 π/ℓ in the complex plane for some positive integer ℓ and k is the maximum integer with this property. Let λ ( H ) denote the maximum modulus of all zeros of µ ( H , x ). We show that λ ( H ) is a simple root of µ ( H , x ) and To achieve these, we introduce the path tree T ( H , u ) of H with respect to a vertex u of H , which is a k -tree, and prove that which generalizes the Godsil’s identity ( Matchings and walks in graphs. J. Graph Theory 5 (1981) 285–297) on the matching polynomial of graphs.

[1]  Yi Wang,et al.  Spectra of Weighted Uniform Hypertrees , 2022, Electron. J. Comb..

[2]  Honghai Li,et al.  The Matching Polynomials and Spectral Radii of Uniform Supertrees , 2018, Electron. J. Comb..

[3]  Xiaogang Liu,et al.  On the A-characteristic polynomial of a graph , 2017, Linear Algebra and its Applications.

[4]  Joshua N. Cooper,et al.  On the Adjacency Spectra of Hypertrees , 2017, Electron. J. Comb..

[5]  Yi-Zheng Fan,et al.  The spectral symmetry of weakly irreducible nonnegative tensors and connected hypergraphs , 2017, Transactions of the American Mathematical Society.

[6]  B. Mohar,et al.  On the first and second eigenvalue of finite and infinite uniform hypergraphs , 2015, Proceedings of the American Mathematical Society.

[7]  Erfang Shan,et al.  The spectra of uniform hypertrees , 2017 .

[8]  Ruixue Zhang,et al.  Properties of chromatic polynomials of hypergraphs not held for chromatic polynomials of graphs , 2016, Eur. J. Comb..

[9]  A. Postnikov,et al.  Root polytopes, Tutte polynomials, and a duality theorem for bipartite graphs , 2016, 1602.04449.

[10]  Yi-Zheng Fan,et al.  On the spectral radius of a class of non-odd-bipartite even uniform hypergraphs , 2015 .

[11]  D. Mubayi,et al.  EIGENVALUES AND LINEAR QUASIRANDOM HYPERGRAPHS , 2012, Forum of Mathematics, Sigma.

[12]  Johann A. Makowsky,et al.  On the location of roots of graph polynomials , 2013, Eur. J. Comb..

[13]  Nikhil Srivastava,et al.  Interlacing Families I: Bipartite Ramanujan Graphs of All Degrees , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[14]  S. Gaubert,et al.  Perron–Frobenius theorem for nonnegative multilinear forms and extensions , 2009, 0905.1626.

[15]  Joshua N. Cooper,et al.  Spectra of Uniform Hypergraphs , 2011, 1106.4856.

[16]  Tam'as K'alm'an A version of Tutte's polynomial for hypergraphs , 2011, 1103.1057.

[17]  Qingzhi Yang,et al.  Further Results for Perron-Frobenius Theorem for Nonnegative Tensors , 2010, SIAM J. Matrix Anal. Appl..

[18]  Cheng Yeaw Ku,et al.  An analogue of the Gallai-Edmonds Structure Theorem for non-zero roots of the matching polynomial , 2008, J. Comb. Theory, Ser. B.

[19]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[20]  Lek-Heng Lim,et al.  Singular values and eigenvalues of tensors: a variational approach , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..

[21]  Liqun Qi,et al.  Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..

[22]  Joel Friedman,et al.  A proof of Alon's second eigenvalue conjecture and related problems , 2004, ArXiv.

[23]  Ioan Tomescu,et al.  Chromatic Coefficients of Linear Uniform Hypergraphs , 1998, J. Comb. Theory, Ser. B.

[24]  Avi Wigderson,et al.  On the second eigenvalue of hypergraphs , 1995, Comb..

[25]  Chris D. Godsil,et al.  ALGEBRAIC COMBINATORICS , 2013 .

[26]  Joel Friedman,et al.  The Spectra of Infinite Hypertrees , 1991, SIAM J. Comput..

[27]  N. Biggs MATCHING THEORY (Annals of Discrete Mathematics 29) , 1988 .

[28]  N. Alon Eigenvalues and expanders , 1986, Comb..

[29]  Chris Godsil,et al.  Spectra of Trees , 1984 .

[30]  Chris D. Godsil,et al.  Matching behaviour is asymptotically normal , 1981, Comb..

[31]  Chris D. Godsil Matchings and walks in graphs , 1981, J. Graph Theory.

[32]  I. Gutman,et al.  On the theory of the matching polynomial , 1981, J. Graph Theory.

[33]  E. J. Farrell,et al.  An introduction to matching polynomials , 1979, J. Comb. Theory, Ser. B.

[34]  J. Aihara A new definition of Dewar-type resonance energies , 1976 .

[35]  T. Willmore Algebraic Geometry , 1973, Nature.

[36]  O. J. Heilmann,et al.  Theory of monomer-dimer systems , 1972 .

[37]  O. J. Heilmann,et al.  Monomers and Dimers , 1970 .

[38]  M. Murty Ramanujan Graphs , 1965 .