A corner-looping based tool path for pocket milling

Abstract In milling around corners, cutting resistance rises momentarily due to an increase of cutter contact length. NC tool path generation in dealing with sharp corners thus requires special consideration. This paper describes an improved NC tool path pattern for pocket milling. The basic pattern of the improved tool path is a conventional contour-parallel tool path. Bow-like tool path segments are appended to the basic tool path at the corner positions. When reaching a corner, the cutter loops around the appended tool path segments so that corner material is removed progressively in several passes. By using the corner-looping based tool path, cutter contact length can be controlled by adjusting the number of appended tool path loops. The procedures of creating the improved tool path for different corner shapes are explained. The proposed tool path generation was implemented as an add-on user function in a CAD/CAM system. Cutting tests were conducted to demonstrate and verify the significance of the proposed method.