Permanent Magnet Helicon Source for Ion Propulsion

Helicon sources have been proposed by at least two groups for generating ions for space propulsion: the Helicon Double Layer Thruster (HDLT) concept at the Australian National University and the Variable Specific Impulse Magnetohydrodynamic Rocket (VASIMR) concept at the Johnson Space Center in Houston. These sources normally require a large electromagnet and power supply to produce the magnetic field. At this stage of research, emphasis has been on the plasma density and ion current that can be produced, but not much on the weight, size, impulse, and gas efficiency of the thruster. This paper concerns the source itself and shows that great savings in size and weight can be obtained by using specially designed permanent magnets (PMs). This PM helicon design, originally developed for plasma processing of large substrates, is extended here for ion thrusters of both the HDLT and VASIMR types. Measured downstream densities are on the order of 1012 cm-3 , which should yield much higher ion currents than reported so far. The design principles have been checked experimentally, showing that the predictions of the theory and computations are reliable. The details of two new designs are given here to serve as examples to stimulate further research on the use of such sources as thrusters.

[1]  C. Charles,et al.  Experimental evidence of a double layer in a large volume helicon reactor. , 2005, Physical review letters.

[2]  C. Charles,et al.  A supersonic ion beam generated by a current-free helicon double-layer , 2003 .

[3]  A. Meige,et al.  One-dimensional simulation of an ion beam generated by a current-free double-Layer , 2005, IEEE Transactions on Plasma Science.

[4]  Christine Charles,et al.  Current-free double-layer formation in a high-density helicon discharge , 2003 .

[5]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[6]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing , 1994 .

[7]  Robert M. Winglee,et al.  Plasma characteristics of a high power helicon discharge , 2006 .

[8]  Konstantin P. Shamrai,et al.  Excitation, conversion and damping of waves in a helicon plasma source driven by an m = 0 antenna , 1997 .

[9]  F. Levinton,et al.  Publisher’s Note: “Ion acceleration in plasmas emerging from a helicon-heated magnetic-mirror device” [Phys. Plasmas 10, 2593 (2003)] , 2003 .

[10]  F. C. Díaz,et al.  Research status of the variable specific impulse magnetoplasma rocket , 1999 .

[11]  C. Charles Hydrogen ion beam generated by a current-free double layer in a helicon plasma , 2004 .

[12]  D. Hayashi,et al.  A Compact Nitrogen Radical Source by Helicon-Wave Discharge Employing a Permanent Magnet , 2000 .

[13]  D. Arnush,et al.  Evidence for Trivelpiece-Gould modes in a helicon discharge. , 2002, Physical review letters.

[14]  J. D. Evans,et al.  Design and performance of distributed helicon sources , 2001 .

[15]  H. Torreblanca,et al.  Density jump in helicon discharges , 2007 .

[16]  Amy E. Wendt,et al.  High-density plasma sources , 2000 .

[17]  Konstantin P. Shamrai,et al.  Geometrical resonances of helicon waves in an axially bounded plasma , 2002 .

[18]  Donald Arnush Role of Trivelpiece-Gould Waves in Antenna Helicon Wave Coupling , 2000 .

[19]  C. Charles Spatially resolved energy analyzer measurements of an ion beam on the low potential side of a current-free double-layer , 2005, IEEE Transactions on Plasma Science.

[20]  C. Charles,et al.  The ion velocity distribution function in a current-free double layer , 2005 .

[21]  C. Charles,et al.  Magnetic steering of a helicon double layer thruster , 2008 .

[22]  Francis F. Chen Physical mechanism of current-free double layers , 2006 .

[23]  Boyd Blackwell,et al.  Ion Detachment in the Helicon Double-Layer Thruster Exhaust Beam , 2006 .

[24]  Michael A. Lieberman,et al.  Principles of Plasma Discharges and Materials Processing, 2nd Edition , 2003 .

[25]  A. J. Parfitt,et al.  Helicon Double Layer Thrusters , 2006 .

[26]  N. Hershkowitz Review of recent laboratory double layer experiments , 1985 .

[27]  V B Taranov,et al.  Resonance wave discharge and collisional energy absorption in helicon plasma source , 1994 .

[28]  玉木 貞一,et al.  第25回AIAA/ASME/SAE/ASEE Joint Propulsion Conferenceに参加して , 1989 .

[29]  A. W. Trivelpiece,et al.  Space Charge Waves in Cylindrical Plasma Columns , 1959 .

[30]  A. Fruchtman,et al.  Electric field in a double layer and the imparted momentum. , 2006, Physical review letters.

[31]  J. P. Rayner,et al.  Radio frequency matching for helicon plasma sources , 1996 .

[32]  K. P. Shamrai,et al.  Compact Helicon Plasma Source with Permanent Magnets for Electric Propulsion Application , 2006 .

[33]  Francis F. Chen,et al.  The low-field density peak in helicon discharges , 2003 .

[34]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing: Lieberman/Plasma 2e , 2005 .

[35]  G. Tynan,et al.  Characterization of an azimuthally symmetric helicon wave high density plasma source , 1997 .

[36]  C. Charles,et al.  One-dimensional particle-in-cell simulation of a current-free double layer in an expanding plasma , 2005 .

[37]  Francis F. Chen,et al.  Plasma ionization by helicon waves , 1991 .

[38]  Robert M. Winglee,et al.  Simulation and laboratory validation of magnetic nozzle effects for the high power helicon thruster , 2007 .

[39]  Richard Howell Goulding,et al.  Comparing experiments with modeling for light ion helicon plasma sources , 2002 .

[40]  F. W. Baity,et al.  High Power Light Gas Helicon Plasma Source for VASIMR , 2006 .

[41]  L. Holway Ambipolar Diffusion in a Magnetic Field , 1965 .

[42]  Francis F. Chen,et al.  Large-area helicon plasma source with permanent magnets , 2007 .

[43]  Humberto Torreblanca Multitube helicon source with permanent magnets , 2008 .

[44]  Y. Sakawa,et al.  Control of antenna coupling in high-density plasma production by m=0 helicon waves , 1998 .

[45]  Suwon Cho The resistance peak of helicon plasmas at low magnetic fields , 2006 .

[46]  C. Charlesa High source potential upstream of a current-free electric double layer , 2005 .

[47]  Francis F. Chen,et al.  1 – Helicon Plasma Sources , 1995 .

[48]  C. Charles,et al.  Observations of ion-beam formation in a current-free double layer. , 2005, Physical review letters.

[49]  Pascal Chabert,et al.  Experimental Studies of Helicon Double Layers for Future High Power Plasma Propulsion , 2006 .

[50]  E. G. Sheikin,et al.  39th AIAA Aerospace Sciences Meeting and Exhibit , 2001 .