Functional materials for breeding blankets—status and developments

[1]  V. Barabash,et al.  Beryllium for fusion application – recent results , 2002 .

[2]  Farrokh Najmabadi,et al.  Spherical torus concept as power plants—the ARIES-ST study , 2003 .

[3]  Tatsuya Hinoki,et al.  Effect of differential swelling between fiber and matrix on the strength of irradiated SiC/SiC composites , 2013 .

[4]  Mark S. Tillack,et al.  High performance PbLi blanket , 1997, 17th IEEE/NPSS Symposium Fusion Engineering (Cat. No.97CH36131).

[5]  Regina Knitter,et al.  Development and qualification of functional materials for the EU Test Blanket Modules: Strategy and R&D activities , 2011 .

[6]  Siegfried Malang,et al.  Toward the ultimate goal of tritium self-sufficiency: Technical issues and requirements imposed on ARIES advanced power plants , 2009 .

[7]  Mikio Enoeda,et al.  Overview of the ITER TBM Program , 2012 .

[8]  Yutai Katoh,et al.  Current status and recent research achievements in SiC/SiC composites , 2014 .

[9]  Yutai Katoh,et al.  Effects of neutron irradiation on mechanical properties of silicon carbide composites fabricated by nano-infiltration and transient eutectic-phase process , 2014 .

[10]  Satoshi Suzuki,et al.  Development of the Water Cooled Ceramic Breeder Test Blanket Module in Japan , 2012 .

[11]  Siegfried Malang,et al.  Double-Layer Flow Channel Insert for Electric and Thermal Insulation in the Dual-Coolant Lead-Lithium Blanket , 2009 .

[12]  David A. Petti,et al.  Steam-chemical reactivity for irradiated beryllium , 1998 .

[13]  Neil B. Morley,et al.  MHD and heat transfer considerations for the US DCLL blanket for DEMO and ITER TBM , 2008 .

[14]  Tsuyoshi Hoshino,et al.  Pebble fabrication of super advanced tritium breeders using a solid solution of Li2+xTiO3+y with Li2ZrO3 , 2016 .

[15]  T. Franke,et al.  Overview of the design approach and prioritization of R&D activities towards an EU DEMO , 2016 .

[16]  Masaru Nakamichi,et al.  Fabrication and hydrogen generation reaction with water vapor of prototypic pebbles of binary beryllides as advanced neutron multiplier , 2015 .

[17]  Tsuyoshi Hoshino,et al.  Development of fabrication technologies for advanced breeding functional materials For DEMO reactors , 2012 .

[18]  Yoshinori Kawamura,et al.  Evaluation of Tritium Release Properties of AdvancedTritium Breeders , 2015 .

[19]  Takayuki Terai,et al.  New synthesis method of advanced lithium titanate with Li4TiO4 additives for ITER-TBM , 2009 .

[20]  Guoshu Zhang,et al.  Updated conceptual design of helium cooling ceramic blanket for HCCB-DEMO , 2016 .

[21]  Masaru Nakamichi,et al.  Novel granulation process of beryllide as advanced neutron multipliers , 2013 .

[22]  Akira Hasegawa,et al.  Continuous SiC fiber, CVI SiC matrix composites for nuclear applications: Properties and irradiation effects , 2014 .

[23]  Akihiro Suzuki,et al.  Basic study on self-healing of Er2O3 coating for vanadium-lithium blanket system , 2007 .

[24]  Akira Kohyama,et al.  Current status and critical issues for development of SiC composites for fusion applications , 2007 .

[25]  Marc Kamlah,et al.  Solution based synthesis of mixed-phase materials in the Li2TiO3 - Li4SiO4 system , 2014, 1410.7128.

[26]  R. Rolli,et al.  Tritium release and retention properties of highly neutron-irradiated beryllium pebbles from HIDOBE-01 experiment , 2013 .

[27]  A. J. Magielsen,et al.  Determination of effective thermal conductivity of beryllium pebble beds during progressive neutron irradiation up to 6000 appm He in the HIDOBE experiments , 2013 .

[28]  Masaru Nakamichi,et al.  Fabrication and characterization of advanced neutron multipliers for DEMO blanket , 2016 .

[29]  Satoshi Konishi,et al.  Design studies of innovatively small fusion reactor based on biomass-fusion hybrid concept: GNOME , 2011 .

[30]  Yan Song,et al.  Preliminary experiment on compatibility of SiCf/SiC composites in static liquid LiPb at 700 °C , 2009 .

[31]  Bruce A Pint,et al.  Overview of Coating and Compatibility Research for Fusion Energy in the U.S. , 2008 .

[32]  Kenji Tobita,et al.  Research and development status on fusion DEMO reactor design under the Broader Approach , 2014 .

[33]  Masaru Nakamichi,et al.  Oxidation behavior of plasma sintered beryllium–titanium intermetallic compounds as an advanced neutron multiplier , 2013 .

[34]  Mohamed A. Abdou,et al.  MHD considerations for the DCLL inboard blanket and access ducts , 2010 .

[35]  Bruce A Pint,et al.  Compatibility Issues for a High Temperature Dual Coolant Blanket , 2007 .

[36]  Akihiro Suzuki,et al.  Development of advanced tritium breeding material with added lithium for ITER-TBM , 2011 .

[37]  Om Prakash Joneja,et al.  Neutronic Performance of Candidate Neutron Multipliers Beryllium and Lead in a Stainless Steel First Wall , 1990 .

[38]  Neil B. Morley,et al.  Dual-coolant lead–lithium (DCLL) blanket status and R&D needs , 2015 .

[39]  Regina Knitter,et al.  Reprocessing of lithium orthosilicate breeder material by remelting , 2007 .

[40]  Akihiko Shimizu,et al.  Innovative Liquid Breeder Blanket Design Activities in Japan , 2005 .

[41]  Lance Lewis Snead,et al.  DC electrical conductivity of silicon carbide ceramics and composites for flow channel insert applications , 2009 .

[42]  Kenji Yokoyama,et al.  Recent status of fabrication technology development of water cooled ceramic breeder test blanket module in Japan , 2011 .

[43]  D. Maisonnier,et al.  The European power plant conceptual study , 2005 .

[44]  Frank W. Zok,et al.  The physics and mechanics of fibre-reinforced brittle matrix composites , 1994, Journal of Materials Science.

[45]  Lance Lewis Snead,et al.  Observation and Possible Mechanism of Irradiation Induced Creep in Ceramics , 2013 .

[46]  L. V. Boccaccini,et al.  Objectives and status of EUROfusion DEMO blanket studies , 2016 .

[47]  E. Diegele,et al.  The manufacturing technologies of the European breeding blankets , 2004 .

[48]  Kentaro Ochiai,et al.  Beryllide pebble fabrication of Be–Zr compositions as advanced neutron multipliers , 2016 .

[49]  E. Proust,et al.  Solid breeder blanket design and tritium breeding , 1991 .

[50]  Ramakanth Munipalli,et al.  Tritium Transport in Poloidal Flows of a DCLL Blanket , 2011 .

[51]  A. J. Magielsen,et al.  In-pile tritium release behaviour of lithiummetatitanate produced by extrusion–spheroidisation–sintering process in EXOTIC-9/1 in the high flux reactor, Petten , 2007 .

[52]  Masaru Nakamichi,et al.  Homogenization treatment to stabilize the compositional structure of beryllide pebbles , 2013 .

[53]  T. Sketchley,et al.  Numerical modeling of first experiments on PbLi MHD flows in a rectangular duct with foam-based SiC flow channel insert , 2016 .

[54]  Yoichi Takahashi,et al.  Non-stoichiometry and its effect on thermal properties of Li2TiO3 , 2002 .

[55]  G. Neilson,et al.  Pre-conceptual design study on K-DEMO ceramic breeder blanket , 2015 .

[56]  Chikara Konno,et al.  Experimental investigation on tritium release from lithium titanate pebble under high temperature of 1073 K , 2015 .

[57]  Mikio Enoeda,et al.  Progress of R&D on water cooled ceramic breeder for ITER test blanket system and DEMO , 2016 .

[58]  Akira Kohyama,et al.  Property Tailorability for Advanced CVI Silicon Carbide composites for Fusion , 2006 .

[59]  Masaru Nakamichi,et al.  Fabrication of beryllide pebble as advanced neutron multiplier , 2014 .

[60]  Mohamed A. Abdou,et al.  Impact of Pressure Equalization Slot in Flow Channel Insert on Tritium Transport in a DCLL-Type Poloidal Duct , 2013 .

[61]  Tsuyoshi Hoshino,et al.  Trial examination of direct pebble fabrication for advanced tritium breeders by the emulsion method , 2014 .

[62]  Andrej Trkov,et al.  FENDL-2.1, Update of an evaluated nuclear data library for fusion applications , 2004 .

[63]  G. Simbolotti,et al.  Breeder and test blankets in ITER , 1991 .

[64]  T. Yuan,et al.  Progress on solid breeder TBM at SWIP , 2010 .

[65]  Farrokh Najmabadi,et al.  Review of blanket designs for advanced fusion reactors , 2008 .

[66]  E. Bogusch,et al.  Status report KfK contribution to the development of DEMO-relevant test blankets for NET/ITER. Part 1: Self-cooled liquid metal breeder blanket. Vol.2: Detailed version , 1991 .

[67]  H. Kleykamp,et al.  Phase equilibria in the Li–Ti–O system and physical properties of Li2TiO3 , 2002 .

[68]  Alice Ying,et al.  Development of a new cellular solid breeder for enhanced tritium production , 2016 .

[69]  Akihiro Suzuki,et al.  Non-stoichiometory and vaporization characteristic of Li2.1TiO3.05 in hydrogen atmosphere , 2007 .

[70]  David E Dombrowski,et al.  Manufacture of beryllium for fusion energy applications , 1997 .

[71]  Yoshinori Kawamura,et al.  Pebble fabrication and tritium release properties of an advanced tritium breeder , 2016 .

[72]  Seungyon Cho,et al.  Optimization of mass-production conditions for tritium breeder pebbles based on slurry droplet wetting method , 2016 .

[73]  Masaru Nakamichi,et al.  Sintering properties of beryllides for advanced neutron multipliers , 2011 .