MOLECULAR GAS IN EXTREME STAR-FORMING ENVIRONMENTS: THE STARBURSTS Arp 220 AND NGC 6240 AS CASE STUDIES

We report single-dish multitransition measurements of the 12CO, HCN, and HCO+ molecular line emission as well as HNC J = 1–0 and HNCO in the two ultraluminous IR galaxies Arp 220 and NGC 6240. Using this new molecular line inventory, in conjunction with existing data in the literature, we compiled the most extensive molecular line data sets to date for such galaxies. The many rotational transitions, with their different excitation requirements, allow the study of the molecular gas over a wide range of different densities and temperatures with significant redundancy, and thus allow good constraints on the properties of the dense gas in these two systems. The mass (∼ (1–2)×1010 M☉) of dense gas (≳105−6 cm−3) found accounts for the bulk of their molecular gas mass, and is consistent with most of their IR luminosities powered by intense starbursts while self-regulated by O, B star cluster radiative pressure onto the star-forming dense molecular gas. The highly excited HCN transitions trace a gas phase ∼ (10–100)× denser than that of the subthermally excited HCO+ lines (for both galaxies). These two phases are consistent with an underlying density-size power law found for Galactic giant molecular clouds (but with a steeper exponent), with HCN lines tracing denser and more compact regions than HCO+. Whether this is true in IR-luminous, star-forming galaxies in general remains to be seen, and underlines the need for observations of molecular transitions with high critical densities for a sample of bright (U)LIRGs in the local universe—a task for which the HI-FI instrument on board Herschel is ideally suited to do.

[1]  Qizhou Zhang,et al.  Submillimeter Array Imaging of the CO(3-2) Line and 860 μm Continuum of Arp 220: Tracing the Spatial Distribution of Luminosity , 2008, 0806.0217.

[2]  R. Neri,et al.  A Multi-Transition HCN and HCO+ Study of 12 Nearby Active Galaxies: Active Galactic Nucleus versus Starburst Environments , 2007, 0712.0319.

[3]  P. P. van der Werf,et al.  First CO J = 6-5 and J = 4-3 Detections in Local ULIRGs: The Dense Gas in Markarian 231 and Its Cooling Budget , 2007, 0706.0811.

[4]  P. D. Werf,et al.  A large CO and HCN line survey of Luminous Infrared Galaxies , 2007, astro-ph/0701829.

[5]  M. Spaans,et al.  Overluminous HNC line emission in Arp 220, NGC 4418 and Mrk 231. Global IR pumping or XDRs? , 2006, astro-ph/0612122.

[6]  P. Papadopoulos HCN versus HCO+ as Dense Molecular Gas Mass Tracers in Luminous Infrared Galaxies , 2006, astro-ph/0610477.

[7]  E. Seaquist,et al.  A High-Resolution Map of 12CO J = 6-5 Emission in the Starburst Galaxy M82 , 2005, astro-ph/0510626.

[8]  P. Solomon,et al.  Connecting Dense Gas Tracers of Star Formation in our Galaxy to High-z Star Formation , 2005, astro-ph/0511424.

[9]  T. Nakagawa,et al.  Dense and Warm Molecular Gas between Double Nuclei of the Luminous Infrared Galaxy NGC 6240 , 2005 .

[10]  Christopher F. McKee,et al.  A General Theory of Turbulence-regulated Star Formation, from Spirals to Ultraluminous Infrared Galaxies , 2005, astro-ph/0505177.

[11]  A. Weiss,et al.  The Spectral Energy Distribution of CO lines in M82 , 2005, astro-ph/0504377.

[12]  A. Evans,et al.  Fe K emission in the ultraluminous infrared galaxy Arp 220 , 2004, astro-ph/0411562.

[13]  S. Hüttemeister,et al.  The Neutral ISM in Starburst Galaxies , 2004 .

[14]  T. Greve,et al.  C I Emission in Ultraluminous Infrared Galaxies as a Molecular Gas Mass Tracer , 2004, astro-ph/0409559.

[15]  C. Brunt,et al.  The Universality of Turbulence in Galactic Molecular Clouds , 2004, astro-ph/0409420.

[16]  M. Gerin,et al.  The submillimeter C and CO lines in Henize 2-10 and NGC 253 , 2004, astro-ph/0407223.

[17]  L. Kewley,et al.  Modeling the Pan-Spectral Energy Distribution of Starburst Galaxies. I. The Role of ISM Pressure and the Molecular Cloud Dissipation Timescale , 2004, astro-ph/0407008.

[18]  P. Solomon,et al.  HCN Survey of Normal Spiral, Infrared-luminous, and Ultraluminous Galaxies , 2003, astro-ph/0310341.

[19]  P. Solomon,et al.  The Star Formation Rate and Dense Molecular Gas in Galaxies , 2003, astro-ph/0310339.

[20]  F. D. Tak,et al.  The physical structure of high-mass star-forming cores , 2003 .

[21]  D. Jaffe,et al.  A CS J = 5 → 4 Mapping Survey Toward High-Mass Star-forming Cores Associated with Water Masers , 2003, astro-ph/0308310.

[22]  A. Tielens,et al.  Neutral Atomic Phases of the Interstellar Medium in the Galaxy , 2003 .

[23]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[24]  A. Bolatto,et al.  CO (J = 7→6) Observations of NGC 253: Cosmic-Ray-heated Warm Molecular Gas , 2002, astro-ph/0212271.

[25]  J. Carlstrom,et al.  Interferometric Observations of the Nuclear Region of Arp 220 at Submillimeter Wavelengths , 2002, astro-ph/0208165.

[26]  D. Hollenbach,et al.  The Neutral Atomic Phases of the ISM in the Galaxy , 2002, astro-ph/0207098.

[27]  S. Aalto,et al.  CN and HNC line emission in IR luminous galaxies , 2001, astro-ph/0111323.

[28]  P. Goldsmith Molecular Depletion and Thermal Balance in Dark Cloud Cores , 2000 .

[29]  N. Scoville,et al.  High-Resolution CO Observations of Luminous Infrared Galaxies , 1999 .

[30]  D. Flower Rotational excitation of HCO+ by H2 , 1999 .

[31]  M. Tecza,et al.  Gasdynamics in the Luminous Merger NGC 6240 , 1999, astro-ph/9905031.

[32]  E. Seaquist,et al.  The State of the Molecular Gas in a Luminous Starburst/Seyfert 2 Galaxy: NGC 1068 Revisited , 1999, astro-ph/9901394.

[33]  Gerard Beaudin,et al.  Heterodyne instrument for FIRST (HIFI): preliminary design , 1998, Astronomical Telescopes and Instrumentation.

[34]  P. Solomon,et al.  Rotating Nuclear Rings and Extreme Starbursts in Ultraluminous Galaxies , 1998, astro-ph/9806377.

[35]  E. Seaquist,et al.  Physical Conditions of the Molecular Gas in Seyfert Galaxies , 1998 .

[36]  J. Jackson,et al.  The Average Properties of the Dense Molecular Gas in Galaxies , 1997 .

[37]  N. Scoville,et al.  Arcsecond Imaging of CO Emission in the Nucleus of Arp 220 , 1997 .

[38]  Simon J. E. Radford,et al.  The Molecular Interstellar Medium in Ultraluminous Infrared Galaxies , 1996, astro-ph/9610166.

[39]  R. Plume,et al.  Dense Gas and Star Formation: Characteristics of Cloud Cores Associated with Water Masers , 1996, astro-ph/9609061.

[40]  D. Sanders,et al.  LUMINOUS INFRARED GALAXIES , 1996 .

[41]  N. Scoville,et al.  High-Resolution CO Observations of the Ultraluminous Infrared Galaxy Markarian 231 , 1996 .

[42]  E. Bergin,et al.  Density Structure in Giant Molecular Cloud Cores , 1996 .

[43]  Simon J. E. Radford,et al.  Molecular Gas and Dust in Infrared Luminous Galaxies , 1996 .

[44]  J. Jackson,et al.  First Observations of extragalactic CSJ = 1 goes to 0 , 1995 .

[45]  J. Carlstrom,et al.  Submillimeter HCN and HCO + Emission from Galaxies , 1995 .

[46]  A. Penzias,et al.  (C-12)/(C-13) isotope ratio in the local interstellar medium from observations of (C-13)(O-18) in molecular clouds , 1993 .

[47]  A survey for extragalactic HCN and HCO , 1992 .

[48]  S. Green,et al.  Tests of shock chemistry in IC 443G , 1992 .

[49]  Simon J. E. Radford,et al.  Warm Molecular Gas in the Primeval Galaxy IRAS 10214+4724 , 1992 .

[50]  Simon J. E. Radford,et al.  Dense Molecular Gas and Starbursts in Ultraluminous Galaxies , 1992 .

[51]  Simon J. E. Radford,et al.  CO excitation and H2 masses of infrared-luminous galaxies , 1991 .

[52]  B. Soifer,et al.  Dust and gas in the core of Arp 220 (IC 4553) , 1991 .

[53]  Simon J. E. Radford,et al.  Dense molecular clouds and the ARP 220 starburst , 1990 .

[54]  F. Schloerb,et al.  Carbon monoxide as an extragalactic mass tracer , 1986 .

[55]  S. E. Persson,et al.  The luminosity function and space density of the most luminous galaxies in the IRAS survey , 1986 .

[56]  J. Launay,et al.  Rate coefficients for the rotational excitation of CO by ortho- and para-H2 , 1985 .

[57]  B. L. Ulich,et al.  Recommendations for calibration of millimeter-wavelength spectral line data. , 1981 .

[58]  P. Goldsmith,et al.  DETERMINATION OF THE HNC TO HCN ABUNDANCE RATIO IN GIANT MOLECULAR CLOUDS , 1981 .

[59]  R. Larson Turbulence and star formation in molecular clouds , 1980 .

[60]  P. Goldsmith,et al.  Molecular cooling and thermal balance of dense interstellar clouds , 1978 .

[61]  P. Thaddeus,et al.  Rotational excitation of HCN by collisions , 1974 .