Integration of antireflection and light diffraction in nature: a strategy for light trapping

The replication of an entire cicada wing was conducted by using a low-surface-energy florin polymer. The replicated polymeric coatings are capable of high-performance antireflection and light diffraction which can enhance light transmission and change the light pathway. The unique improvement in light trapping shows that these biological replicas are suitable for promoting the efficient utilization of light in a wide range of optic devices.

[1]  Yapei Wang,et al.  Tuning multiphase amphiphilic rods to direct self-assembly. , 2012, Journal of the American Chemical Society.

[2]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[3]  Xianzhi Fu,et al.  Hierarchical macro/mesoporous TiO2/SiO2 and TiO2/ZrO2 nanocomposites for environmental photocatalysis , 2009 .

[4]  R. R. Baker,et al.  The distance and nature of the light-trap response of moths , 1978, Nature.

[5]  U. Steiner,et al.  Nanophase-separated polymer films as high-performance antireflection coatings , 1999, Science.

[6]  Junbiao Peng,et al.  Conjugated zwitterionic polyelectrolyte-based interface modification materials for high performance polymer optoelectronic devices , 2013 .

[7]  Surojit Chattopadhyay,et al.  Anti-reflecting and photonic nanostructures , 2010 .

[8]  E. Fred Schubert,et al.  Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection , 2007 .

[9]  Hongming Fan,et al.  Simple lithographic approach for subwavelength structure antireflection , 2007 .

[10]  O Ok Park,et al.  Enhancement of donor-acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles. , 2011, Angewandte Chemie.

[11]  T. Merkel,et al.  Generation of a library of particles having controlled sizes and shapes via the mechanical elongation of master templates. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[12]  Ivan Moreno,et al.  Thin-film spatial filters. , 2005, Optics letters.

[13]  Ginger M. Denison,et al.  High-resolution soft lithography: enabling materials for nanotechnologies. , 2004, Angewandte Chemie.

[14]  N. Moszner,et al.  Sol-Gel Materials, 1. Synthesis and Hydrolytic Condensation of New Cross-Linking Alkoxysilane Methacrylates and Light-Curing Composites Based upon the Condensates , 2002 .

[15]  Peidong Yang,et al.  Light trapping in silicon nanowire solar cells. , 2010, Nano letters.

[16]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[17]  Zhongfan Liu,et al.  Cicada wings: a stamp from nature for nanoimprint lithography. , 2006, Small.

[18]  M. Rubner,et al.  Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers , 2002, Nature materials.

[19]  Seeram Ramakrishna,et al.  Robust and durable polyhedral oligomeric silsesquioxane-based anti-reflective nanostructures with broadband quasi-omnidirectional properties , 2013 .

[20]  Lei Jiang,et al.  The Dry‐Style Antifogging Properties of Mosquito Compound Eyes and Artificial Analogues Prepared by Soft Lithography , 2007 .

[21]  C. Soci,et al.  ZnO nanowire UV photodetectors with high internal gain. , 2007, Nano letters.

[22]  H. Kisch,et al.  Daylight photocatalysis by carbon-modified titanium dioxide. , 2003, Angewandte Chemie.

[23]  B. E. Yoldas,et al.  Investigations of porous oxides as an antireflective coating for glass surfaces. , 1980, Applied optics.

[24]  Walter Hu,et al.  Nanoimprinted polymer solar cell. , 2012, ACS nano.

[25]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[26]  Gui Yu,et al.  Functional Organic Field‐Effect Transistors , 2010, Advanced materials.

[27]  K. Hane,et al.  Broadband antireflection gratings fabricated upon silicon substrates. , 1999, Optics letters.

[28]  Lenora H. Brewer,et al.  Photocurable Amphiphilic Perfluoropolyether/Poly(ethylene glycol) Networks for Fouling-Release Coatings , 2011 .

[29]  Yongmei Zheng,et al.  A study of the anti-reflection efficiency of natural nano-arrays of varying sizes , 2011, Bioinspiration & biomimetics.

[30]  Zhenan Bao,et al.  Stretchable, elastic materials and devices for solar energy conversion , 2011 .

[31]  Zhongfan Liu,et al.  The fabrication of subwavelength anti-reflective nanostructures using a bio-template , 2008, Nanotechnology.

[32]  M. Hutley,et al.  Reduction of Lens Reflexion by the “Moth Eye” Principle , 1973, Nature.

[33]  O. Hunderi,et al.  Effective medium models for the optical properties of inhomogeneous materials. , 1981, Applied optics.

[34]  Peng Jiang,et al.  Broadband moth-eye antireflec tion coatings on silicon , 2008 .

[35]  H. Hattori,et al.  Anti‐Reflection Surface with Particle Coating Deposited by Electrostatic Attraction , 2001 .

[36]  Xiong Gong,et al.  Organic photoresponse materials and devices. , 2012, Chemical Society reviews.

[37]  Joachim P. Spatz,et al.  Lessons from nature: biomimetic subwavelength structures for high‐performance optics , 2012 .

[38]  Rene Lopez,et al.  Biomimetic microlens array with antireflective “moth-eye” surface , 2011 .

[39]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.