Hybrid Ikebe-Newton's iteration for inverting general nonsingular Hessenberg matrices

After a concise survey, the expanded Ikebe algorithm for inverting the lower half plus the superdiagonal of an n × n unreduced upper Hessenberg matrix H is extended to general nonsingular upper Hessenberg matrices by computing, in the reduced case, a block diagonal form of the factor matrix HL in the inverse factorization H - 1 = H L U - 1 . This factorization enables us to propose hybrid and accurate (nongaussian) procedures for computing H - 1 . Thus, HL is computed directly in the aim to be used as a fine initial guess for Newton's iteration, which converges to H - 1 in a suitable number of iterations.

[1]  Cheng-Yi Yu,et al.  A new algorithm for computing the inverse and the determinant of a Hessenberg matrix , 2011, Appl. Math. Comput..

[2]  Y. Ikebe On inverses of Hessenberg matrices , 1979 .

[3]  Ahmed Driss Aiat Hadj,et al.  A new recursive algorithm for inverting Hessenberg matrices , 2009, Appl. Math. Comput..

[4]  D. Heller A Survey of Parallel Algorithms in Numerical Linear Algebra. , 1978 .

[5]  Victor Y. Pan,et al.  An Improved Newton Iteration for the Generalized Inverse of a Matrix, with Applications , 1991, SIAM J. Sci. Comput..

[6]  Victor Y. Pan,et al.  Newton-Like Iteration Based on a Cubic Polynomial for Structured Matrices , 2004, Numerical Algorithms.

[7]  J. Abderramán Marrero,et al.  On the closed representation for the inverses of Hessenberg matrices , 2012, J. Comput. Appl. Math..

[8]  Miroslav Fiedler,et al.  Generalized Hessenberg matrices , 2004 .

[9]  Enrico Bozzo,et al.  qd-Type Methods for Quasiseparable Matrices , 2011, SIAM J. Matrix Anal. Appl..

[10]  G. Stewart,et al.  On the Numerical Properties of an Iterative Method for Computing the Moore–Penrose Generalized Inverse , 1974 .

[11]  A note on generalized Hessenberg matrices , 2005 .

[12]  G. Schulz Iterative Berechung der reziproken Matrix , 1933 .

[13]  K. A. Gallivan,et al.  Parallel Algorithms for Dense Linear Algebra Computations , 1990, SIAM Rev..

[14]  Robert A. van de Geijn,et al.  A Note On Parallel Matrix Inversion , 2000, SIAM J. Sci. Comput..

[15]  J. Abderramán Marrero,et al.  On new algorithms for inverting Hessenberg matrices , 2013, J. Comput. Appl. Math..

[16]  Germund Dahlquist,et al.  Numerical methods in scientific computing , 2008 .

[17]  E. Asplund,et al.  Inverses of Matrices $\{a_{ij}\}$ which Satisfy $a_{ij} = 0$ for $j > i+p$. , 1959 .

[18]  M. Rachidi,et al.  Inverses of generalized Hessenberg matrices , 2015 .