Hybrid Ikebe-Newton's iteration for inverting general nonsingular Hessenberg matrices
暂无分享,去创建一个
[1] Cheng-Yi Yu,et al. A new algorithm for computing the inverse and the determinant of a Hessenberg matrix , 2011, Appl. Math. Comput..
[2] Y. Ikebe. On inverses of Hessenberg matrices , 1979 .
[3] Ahmed Driss Aiat Hadj,et al. A new recursive algorithm for inverting Hessenberg matrices , 2009, Appl. Math. Comput..
[4] D. Heller. A Survey of Parallel Algorithms in Numerical Linear Algebra. , 1978 .
[5] Victor Y. Pan,et al. An Improved Newton Iteration for the Generalized Inverse of a Matrix, with Applications , 1991, SIAM J. Sci. Comput..
[6] Victor Y. Pan,et al. Newton-Like Iteration Based on a Cubic Polynomial for Structured Matrices , 2004, Numerical Algorithms.
[7] J. Abderramán Marrero,et al. On the closed representation for the inverses of Hessenberg matrices , 2012, J. Comput. Appl. Math..
[8] Miroslav Fiedler,et al. Generalized Hessenberg matrices , 2004 .
[9] Enrico Bozzo,et al. qd-Type Methods for Quasiseparable Matrices , 2011, SIAM J. Matrix Anal. Appl..
[10] G. Stewart,et al. On the Numerical Properties of an Iterative Method for Computing the Moore–Penrose Generalized Inverse , 1974 .
[11] A note on generalized Hessenberg matrices , 2005 .
[12] G. Schulz. Iterative Berechung der reziproken Matrix , 1933 .
[13] K. A. Gallivan,et al. Parallel Algorithms for Dense Linear Algebra Computations , 1990, SIAM Rev..
[14] Robert A. van de Geijn,et al. A Note On Parallel Matrix Inversion , 2000, SIAM J. Sci. Comput..
[15] J. Abderramán Marrero,et al. On new algorithms for inverting Hessenberg matrices , 2013, J. Comput. Appl. Math..
[16] Germund Dahlquist,et al. Numerical methods in scientific computing , 2008 .
[17] E. Asplund,et al. Inverses of Matrices $\{a_{ij}\}$ which Satisfy $a_{ij} = 0$ for $j > i+p$. , 1959 .
[18] M. Rachidi,et al. Inverses of generalized Hessenberg matrices , 2015 .