Implicitly representing arrangements of lines or segments

An <italic>arrangement</italic> of <italic>n</italic> lines (or line segments) in the plane is the partition of the plane defined by these objects. Such an arrangement consists of <italic>&Ogr;</italic>(<italic>n</italic><supscrpt>2</supscrpt>) regions, called <italic>faces</italic>. In this paper we study the problem of calculating and storing arrangements <italic>implicitly</italic>, using subquadratic space and preprocessing, so that, given any query point <italic>p</italic>, we can calculate efficiently the face containing <italic>p</italic>. First, we consider the case of lines and show that with Λ(<italic>n</italic>) space<supscrpt>1</supscrpt> and Λ(<italic>n</italic><supscrpt>3/2</supscrpt>) preprocessing time, we can answer face queries in Λ(√<italic>n</italic>) + <italic>&Ogr;</italic>(<italic>K</italic>) time, where <italic>K</italic> is the output size. (The query time is achieved with high probability.) In the process, we solve three interesting subproblems: 1) given a set of <italic>n</italic> points, find a straight-edge spanning tree of these points such that any line intersects only a few edges of the tree, 2) given a simple polygonal path Γ, form a data structure from which we can find the convex hull of any subpath of Γ quickly, and 3) given a set of points, organize them so that the convex hull of their subset lying above a query line can be found quickly. Second, using random sampling, we give a trade-off between increasing space and decreasing query time. Third, we extend our structure to report faces in an arrangement of line segments in Λ(<italic>n</italic><supscrpt>1/3</supscrpt>) time, given Λ(<italic>n</italic><supscrpt>4/3</supscrpt>) space and Λ(<italic>n</italic><supscrpt>5/3</supscrpt>) preprocessing time. Lastly, we note that our techniques allow us to compute <italic>m</italic> faces in an arrangement of <italic>n</italic> lines in time Λ(<italic>m</italic><supscrpt>2/3</supscrpt><italic>n</italic><supscrpt>2/3</supscrpt> + <italic>n</italic>), which is nearly optimal.

[1]  Donald E. Knuth,et al.  Sorting and Searching , 1973 .

[2]  Donald E. Knuth,et al.  The Art of Computer Programming: Volume 3: Sorting and Searching , 1998 .

[3]  Michael Ian Shamos,et al.  Geometric intersection problems , 1976, 17th Annual Symposium on Foundations of Computer Science (sfcs 1976).

[4]  Thomas Ottmann,et al.  Algorithms for Reporting and Counting Geometric Intersections , 1979, IEEE Transactions on Computers.

[5]  Kevin Q. Brown Geometric transforms for fast geometric algorithms , 1979 .

[6]  Jan van Leeuwen,et al.  Maintenance of Configurations in the Plane , 1981, J. Comput. Syst. Sci..

[7]  Dan E. Willard,et al.  Polygon Retrieval , 1982, SIAM journal on computing (Print).

[8]  Leonidas J. Guibas,et al.  The power of geometric duality , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[9]  David G. Kirkpatrick,et al.  Optimal Search in Planar Subdivisions , 1983, SIAM J. Comput..

[10]  Raimund Seidel,et al.  Constructing arrangements of lines and hyperplanes with applications , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[11]  Leonidas J. Guibas,et al.  Visibility and intersectin problems in plane geometry , 1985, SCG '85.

[12]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[13]  Robert E. Tarjan,et al.  Planar point location using persistent search trees , 1986, CACM.

[14]  Micha Sharir,et al.  On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles , 1986, Discret. Comput. Geom..

[15]  Leonidas J. Guibas,et al.  Topologically sweeping an arrangement , 1986, STOC '86.

[16]  Leonidas J. Guibas,et al.  Optimal Point Location in a Monotone Subdivision , 1986, SIAM J. Comput..

[17]  Herbert Edelsbrunner,et al.  Halfplanar Range Search in Linear Space and O(n^(0.695)) Query Time , 1986, Inf. Process. Lett..

[18]  David Haussler,et al.  Epsilon-nets and simplex range queries , 1986, SCG '86.

[19]  Kenneth L. Clarkson,et al.  New applications of random sampling in computational geometry , 1987, Discret. Comput. Geom..

[20]  Leonidas J. Guibas,et al.  Optimal shortest path queries in a simple polygon , 1987, SCG '87.

[21]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[22]  David Haussler,et al.  ɛ-nets and simplex range queries , 1987, Discret. Comput. Geom..

[23]  Emo Welzl,et al.  Partition trees for triangle counting and other range searching problems , 1988, SCG '88.

[24]  Kenneth L. Clarkson,et al.  Combinatorial complexity bounds for arrangements of curves and surfaces , 2015, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[25]  Bernard Chazelle,et al.  An optimal algorithm for intersecting line segments in the plane , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[26]  Leonidas J. Guibas,et al.  The complexity of many faces in arrangements of lines of segments , 1988, SCG '88.

[27]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[28]  Leonidas J. Guibas,et al.  Intersecting Line Segments, Ray Shooting, and Other Applications of Geometric Partitioning Techniques , 1988, SWAT.

[29]  Leonidas J. Guibas,et al.  Visibility and intersection problems in plane geometry , 1989, Discret. Comput. Geom..

[30]  Leonidas J. Guibas,et al.  Optimal Shortest Path Queries in a Simple Polygon , 1989, J. Comput. Syst. Sci..

[31]  Bernard Chazelle,et al.  Quasi-optimal range searching in spaces of finite VC-dimension , 1989, Discret. Comput. Geom..

[32]  F. Frances Yao,et al.  Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[33]  Leonidas J. Guibas,et al.  Combinatorial complexity bounds for arrangements of curves and spheres , 1990, Discret. Comput. Geom..

[34]  Leonidas J. Guibas,et al.  Compact interval trees: a data structure for convex hulls , 1991, SODA '90.

[35]  Micha Sharir,et al.  Triangles in space or building (and analyzing) castles in the air , 1990, Comb..