Tuning the mechanical and thermal properties of (MgNiCoCuZn)O by intelligent control of cooling rates

[1]  M. Nomura,et al.  Phonon–dislocation interaction and its impact on thermal conductivity , 2021, Journal of Applied Physics.

[2]  J. Schoenung,et al.  Hidden Transformations in Entropy-Stabilized Oxides , 2021 .

[3]  K. Esfarjani,et al.  Tunable lattice distortion in MgCoNiCuZnO5 entropy-stabilized oxide , 2021, Journal of Materials Research.

[4]  J. Schoenung,et al.  Multiscale phase homogeneity in bulk nanocrystalline high entropy oxides , 2021 .

[5]  Ravi Kumar,et al.  Critical role of cationic local stresses on the stabilization of entropy‐stabilized transition metal oxides , 2020 .

[6]  S. Subramanian,et al.  Antiferromagnetism in a nanocrystalline high entropy oxide (Co,Cu,Mg,Ni,Zn)O: Magnetic constituents and surface anisotropy leading to lattice distortion , 2020, 2004.11684.

[7]  E. Lara‐Curzio,et al.  On the elastic anisotropy of the entropy-stabilized oxide (Mg, Co, Ni, Cu, Zn)O compound , 2020, 2004.06613.

[8]  Hongyan Wang,et al.  Screw dislocation induced phonon transport suppression in SiGe superlattices , 2019, Physical Review B.

[9]  H. Hahn,et al.  On the homogeneity of high entropy oxides: An investigation at the atomic scale , 2019, Scripta Materialia.

[10]  Christina M. Rost,et al.  Influence of mass and charge disorder on the phonon thermal conductivity of entropy stabilized oxides determined by molecular dynamics simulations , 2019, Journal of Applied Physics.

[11]  J. Schoenung,et al.  Entropic phase transformation in nanocrystalline high entropy oxides , 2018, Materials Research Letters.

[12]  V. Drozdov,et al.  High-resolution neutron Fourier diffractometer at the IBR-2 pulsed reactor: A new concept , 2018, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms.

[13]  Christina M. Rost,et al.  Charge‐Induced Disorder Controls the Thermal Conductivity of Entropy‐Stabilized Oxides , 2018, Advanced materials.

[14]  M. Reece,et al.  Data-Driven Design of Ecofriendly Thermoelectric High-Entropy Sulfides. , 2018, Inorganic chemistry.

[15]  Qingsong Wang,et al.  High entropy oxides for reversible energy storage , 2018, Nature Communications.

[16]  W. Chueh,et al.  The use of poly-cation oxides to lower the temperature of two-step thermochemical water splitting , 2018 .

[17]  M. Chi,et al.  Entropy-stabilized metal oxide solid solutions as CO oxidation catalysts with high-temperature stability , 2018 .

[18]  S. Grasso,et al.  Processing and Properties of High-Entropy Ultra-High Temperature Carbides , 2018, Scientific Reports.

[19]  Jun Hu,et al.  Mechanochemical‐Assisted Synthesis of High‐Entropy Metal Nitride via a Soft Urea Strategy , 2018, Advanced materials.

[20]  K. Termentzidis,et al.  Impact of screw and edge dislocations on the thermal conductivity of individual nanowires and bulk GaN: a molecular dynamics study. , 2018, Physical chemistry chemical physics : PCCP.

[21]  P. Hopkins,et al.  Reduced dependence of thermal conductivity on temperature and pressure of multi-atom component crystalline solid solutions , 2018 .

[22]  C. M. Handley,et al.  Phase stability and distortion in high-entropy oxides , 2017 .

[23]  C. M. Rost,et al.  On the minimum limit to thermal conductivity of multi-atom component crystalline solid solutions based on impurity mass scattering , 2017 .

[24]  J. Maria,et al.  Local structure of the MgxNixCoxCuxZnxO(x=0.2) entropy‐stabilized oxide: An EXAFS study , 2017 .

[25]  S. Franger,et al.  Controlled Jahn-Teller distortion in (MgCoNiCuZn)O-based high entropy oxides , 2017 .

[26]  A. Nzihou,et al.  The impact of heat treatment on the microstructure of a clay ceramic and its thermal and mechanical properties , 2017 .

[27]  Tyler J. Harrington,et al.  High-Entropy Metal Diborides: A New Class of High-Entropy Materials and a New Type of Ultrahigh Temperature Ceramics , 2016, Scientific Reports.

[28]  Cormac Toher,et al.  Charge compensation and electrostatic transferability in three entropy-stabilized oxides: Results from density functional theory calculations , 2016 .

[29]  S. Franger,et al.  Room temperature lithium superionic conductivity in high entropy oxides , 2016 .

[30]  Y. Kong,et al.  The microstructure evolution of U1 and U2 nanowires constrained in Al matrix , 2016 .

[31]  S. Franger,et al.  Colossal dielectric constant in high entropy oxides , 2016, 1602.07842.

[32]  N. Tessier-Doyen,et al.  Anisotropy of thermal conductivity and elastic properties of extruded clay-based materials: Evolution with thermal treatment , 2015 .

[33]  Jacob L. Jones,et al.  Entropy-stabilized oxides , 2015, Nature Communications.

[34]  R. Melnik,et al.  Relative importance of grain boundaries and size effects in thermal conductivity of nanocrystalline materials , 2014, Scientific Reports.

[35]  R. Lakes,et al.  Poisson's ratio and modern materials , 2011, Nature Materials.

[36]  Dianzhong Li,et al.  Intrinsic Correlation between Hardness and Elasticity in Polycrystalline Materials and Bulk Metallic Glasses , 2011, 1102.4063.

[37]  S. Phillpot,et al.  Thermal transport properties of MgO and Nd2Zr2O7 pyrochlore by molecular dynamics simulation , 2008 .

[38]  C. Benmore,et al.  Network rigidity in GeSe2 glass at high pressure. , 2008, Physical review letters.

[39]  S. Sinogeikin,et al.  A high pressure Brillouin scattering study of vitreous boron oxide up to 57GPa , 2004 .

[40]  A. Borbely,et al.  The contrast factors of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice , 1999 .

[41]  Zha,et al.  Acoustic velocities and refractive index of SiO2 glass to 57.5 GPa by Brillouin scattering. , 1994, Physical review. B, Condensed matter.

[42]  H. Weinstock,et al.  Effect of Dislocations on the Thermal Conductivity of Lithium Fluoride , 1959 .

[43]  W. D. Kingery,et al.  Thermal Conductivity: I, Concepts of Measurement and Factors Affecting Thermal Conductivity of Ceramic Materials , 1954 .

[44]  Baochang Liu,et al.  Deformation behavior of high-entropy oxide (Mg,Co,Ni,Cu,Zn)O under extreme compression , 2022, Scripta Materialia.

[45]  Luke N Brewer,et al.  Multivariate statistics applications in phase analysis of STEM-EDS spectrum images. , 2010, Ultramicroscopy.

[46]  Arthur Schweiger,et al.  EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. , 2006, Journal of magnetic resonance.

[47]  Juan Rodriguez-Carvaj,et al.  Recent advances in magnetic structure determination neutron powder diffraction , 1993 .

[48]  J. K. Lumpp,et al.  Mechanical Properties of CuO , 1990 .

[49]  A. Petford-Long,et al.  In-situ electron-beam-induced reduction of CuO: A study of phase transformations in cupric oxide , 1986 .

[50]  R. E. Barker An Approximate Relation Between Elastic Moduli and Thermal Expansivities , 1963 .