Anodic self-organized transparent nanotubular/porous hematite films from Fe thin-films sputtered on FTO and photoelectrochemical water splitting

[1]  Z. Remeš,et al.  On the improvement of PEC activity of hematite thin films deposited by high-power pulsed magnetron sputtering method , 2015 .

[2]  Š. Kment,et al.  TiO2 and Fe2O3 Films for Photoelectrochemical Water Splitting , 2015, Molecules.

[3]  Lichao Jia,et al.  α-Fe2O3 films for photoelectrochemical water oxidation – insights of key performance parameters , 2014 .

[4]  K. Sopian,et al.  Photoelectrochemical water splitting performance of vertically aligned hematite nanoflakes deposited on FTO by a hydrothermal method , 2014 .

[5]  Z. Remeš,et al.  High-power pulsed plasma deposition of hematite photoanode for PEC water splitting , 2014 .

[6]  L. Wang,et al.  Si-doped Fe2O3 nanotubular/nanoporous layers for enhanced photoelectrochemical water splitting , 2013 .

[7]  P. Schmuki,et al.  Influence of anodization parameters on the expansion factor of TiO2 nanotubes , 2013 .

[8]  M. Fontecave,et al.  Mesoporous α-Fe2O3 thin films synthesized via the sol-gel process for light-driven water oxidation. , 2012, Physical chemistry chemical physics : PCCP.

[9]  D. H. Wang,et al.  Controlled synthesis of vertically aligned hematite on conducting substrate for photoelectrochemical cells: nanorods versus nanotubes. , 2011, ACS applied materials & interfaces.

[10]  C. Wolden,et al.  Activation of hematite nanorod arrays for photoelectrochemical water splitting. , 2011, ChemSusChem.

[11]  Michael Grätzel,et al.  Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes. , 2011, ChemSusChem.

[12]  Yichuan Ling,et al.  Sn-doped hematite nanostructures for photoelectrochemical water splitting. , 2011, Nano letters.

[13]  E. Leite,et al.  Magnetite colloidal nanocrystals: a facile pathway to prepare mesoporous hematite thin films for photoelectrochemical water splitting. , 2011, Journal of the American Chemical Society.

[14]  G. Thompson,et al.  Galvanostatic Growth of Nanoporous Anodic Films on Iron in Ammonium Fluoride−Ethylene Glycol Electrolytes with Different Water Contents , 2010 .

[15]  M. Grätzel,et al.  Decoupling feature size and functionality in solution-processed, porous hematite electrodes for solar water splitting. , 2010, Nano letters.

[16]  Anke Weidenkaff,et al.  Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. , 2010, Journal of the American Chemical Society.

[17]  M. Grätzel,et al.  Controlling Photoactivity in Ultrathin Hematite Films for Solar Water‐Splitting , 2010 .

[18]  K. Raja,et al.  Nanostructured anodic iron oxide film as photoanode for water oxidation , 2009 .

[19]  Michael Grätzel,et al.  WO3-Fe2O3 Photoanodes for Water Splitting: A Host Scaffold, Guest Absorber Approach , 2009 .

[20]  M. Misra,et al.  Water Photooxidation by Smooth and Ultrathin α-Fe2O3 Nanotube Arrays , 2009 .

[21]  J. S. Lee,et al.  Phase and photoelectrochemical behavior of solution-processed Fe2O3 nanocrystals for oxidation of water under solar light , 2008 .

[22]  Eric W. McFarland,et al.  Pt-Doped α-Fe2O3 Thin Films Active for Photoelectrochemical Water Splitting , 2008 .

[23]  A. Hagfeldt,et al.  Photoelectrochemical Studies of Oriented Nanorod Thin Films of Hematite , 2000 .

[24]  Shahed U. M. Khan,et al.  PHOTOELECTROCHEMICAL SPLITTING OF WATER AT NANOCRYSTALLINE N-FE2O3 THIN-FILM ELECTRODES , 1999 .

[25]  T. Nakau Electrical Conductivity of α-Fe2O3 , 1960 .

[26]  P. Schmuki,et al.  Solar water splitting: preserving the beneficial small feature size in porous α-Fe2O3 photoelectrodes during annealing , 2013 .