Anodic self-organized transparent nanotubular/porous hematite films from Fe thin-films sputtered on FTO and photoelectrochemical water splitting
暂无分享,去创建一个
R. Zbořil | P. Schmuki | J. Olejníček | Š. Kment | Lei Wang | Z. Hubička | J. Krýsa | Kiyoung Lee | Chong‐Yong Lee | Robin Kirchgeorg | Ning Liu | M. Čada
[1] Z. Remeš,et al. On the improvement of PEC activity of hematite thin films deposited by high-power pulsed magnetron sputtering method , 2015 .
[2] Š. Kment,et al. TiO2 and Fe2O3 Films for Photoelectrochemical Water Splitting , 2015, Molecules.
[3] Lichao Jia,et al. α-Fe2O3 films for photoelectrochemical water oxidation – insights of key performance parameters , 2014 .
[4] K. Sopian,et al. Photoelectrochemical water splitting performance of vertically aligned hematite nanoflakes deposited on FTO by a hydrothermal method , 2014 .
[5] Z. Remeš,et al. High-power pulsed plasma deposition of hematite photoanode for PEC water splitting , 2014 .
[6] L. Wang,et al. Si-doped Fe2O3 nanotubular/nanoporous layers for enhanced photoelectrochemical water splitting , 2013 .
[7] P. Schmuki,et al. Influence of anodization parameters on the expansion factor of TiO2 nanotubes , 2013 .
[8] M. Fontecave,et al. Mesoporous α-Fe2O3 thin films synthesized via the sol-gel process for light-driven water oxidation. , 2012, Physical chemistry chemical physics : PCCP.
[9] D. H. Wang,et al. Controlled synthesis of vertically aligned hematite on conducting substrate for photoelectrochemical cells: nanorods versus nanotubes. , 2011, ACS applied materials & interfaces.
[10] C. Wolden,et al. Activation of hematite nanorod arrays for photoelectrochemical water splitting. , 2011, ChemSusChem.
[11] Michael Grätzel,et al. Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes. , 2011, ChemSusChem.
[12] Yichuan Ling,et al. Sn-doped hematite nanostructures for photoelectrochemical water splitting. , 2011, Nano letters.
[13] E. Leite,et al. Magnetite colloidal nanocrystals: a facile pathway to prepare mesoporous hematite thin films for photoelectrochemical water splitting. , 2011, Journal of the American Chemical Society.
[14] G. Thompson,et al. Galvanostatic Growth of Nanoporous Anodic Films on Iron in Ammonium Fluoride−Ethylene Glycol Electrolytes with Different Water Contents , 2010 .
[15] M. Grätzel,et al. Decoupling feature size and functionality in solution-processed, porous hematite electrodes for solar water splitting. , 2010, Nano letters.
[16] Anke Weidenkaff,et al. Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. , 2010, Journal of the American Chemical Society.
[17] M. Grätzel,et al. Controlling Photoactivity in Ultrathin Hematite Films for Solar Water‐Splitting , 2010 .
[18] K. Raja,et al. Nanostructured anodic iron oxide film as photoanode for water oxidation , 2009 .
[19] Michael Grätzel,et al. WO3-Fe2O3 Photoanodes for Water Splitting: A Host Scaffold, Guest Absorber Approach , 2009 .
[20] M. Misra,et al. Water Photooxidation by Smooth and Ultrathin α-Fe2O3 Nanotube Arrays , 2009 .
[21] J. S. Lee,et al. Phase and photoelectrochemical behavior of solution-processed Fe2O3 nanocrystals for oxidation of water under solar light , 2008 .
[22] Eric W. McFarland,et al. Pt-Doped α-Fe2O3 Thin Films Active for Photoelectrochemical Water Splitting , 2008 .
[23] A. Hagfeldt,et al. Photoelectrochemical Studies of Oriented Nanorod Thin Films of Hematite , 2000 .
[24] Shahed U. M. Khan,et al. PHOTOELECTROCHEMICAL SPLITTING OF WATER AT NANOCRYSTALLINE N-FE2O3 THIN-FILM ELECTRODES , 1999 .
[25] T. Nakau. Electrical Conductivity of α-Fe2O3 , 1960 .
[26] P. Schmuki,et al. Solar water splitting: preserving the beneficial small feature size in porous α-Fe2O3 photoelectrodes during annealing , 2013 .