X-Ramanujan Graphs

Let $X$ be an infinite graph of bounded degree; e.g., the Cayley graph of a free product of finite groups. If $G$ is a finite graph covered by $X$, it is said to be $X$-Ramanujan if its second-largest eigenvalue $\lambda_2(G)$ is at most the spectral radius $\rho(X)$ of $X$, and more generally $k$-quasi-$X$-Ramanujan if $\lambda_k(G)$ is at most $\rho(X)$. In case $X$ is the infinite $\Delta$-regular tree, this reduces to the well known notion of a finite $\Delta$-regular graph being Ramanujan. Inspired by the Interlacing Polynomials method of Marcus, Spielman, and Srivastava, we show the existence of infinitely many $k$-quasi-$X$-Ramanujan graphs for a variety of infinite $X$. In particular, $X$ need not be a tree; our analysis is applicable whenever $X$ is what we call an additive product graph. This additive product is a new construction of an infinite graph $\mathsf{AddProd}(A_1, \dots, A_c)$ from finite 'atom' graphs $A_1, \dots, A_c$ over a common vertex set. It generalizes the notion of the free product graph $A_1 * \cdots * A_c$ when the atoms $A_j$ are vertex-transitive, and it generalizes the notion of the universal covering tree when the atoms $A_j$ are single-edge graphs. Key to our analysis is a new graph polynomial $\alpha(A_1, \dots, A_c;x)$ that we call the additive characteristic polynomial. It generalizes the well known matching polynomial $\mu(G;x)$ in case the atoms $A_j$ are the single edges of $G$, and it generalizes the $r$-characteristic polynomial introduced in [Ravichandran'16, Leake-Ravichandran'18]. We show that $\alpha(A_1, \dots, A_c;x)$ is real-rooted, and all of its roots have magnitude at most $\rho(\mathsf{AddProd}(A_1, \dots, A_c))$. This last fact is proven by generalizing Godsil's notion of treelike walks on a graph $G$ to a notion of freelike walks on a collection of atoms $A_1, \dots, A_c$.

[1]  D. Spielman,et al.  Interlacing Families II: Mixed Characteristic Polynomials and the Kadison-Singer Problem , 2013, 1306.3969.

[2]  Alexander Lubotzky,et al.  Discrete groups, expanding graphs and invariant measures , 1994, Progress in mathematics.

[3]  R. Speicher Free Probability Theory , 1996, Oberwolfach Reports.

[4]  Paul Rochet,et al.  Algebraic Combinatorics on Trace Monoids: Extending Number Theory to Walks on Graphs , 2016, SIAM J. Discret. Math..

[5]  W. Li,et al.  Spectra of Hypergraphs and Applications , 1996 .

[6]  Pierre Cartier,et al.  Problemes combinatoires de commutation et rearrangements , 1969 .

[7]  Bojan Mohar,et al.  A strengthening and a multipartite generalization of the Alon-Boppana-Serre theorem , 2010, 1002.1084.

[8]  B. Mohar,et al.  A Survey on Spectra of infinite Graphs , 1989 .

[9]  O. J. Heilmann,et al.  Theory of monomer-dimer systems , 1972 .

[10]  Maike Massierer,et al.  Ramanujan graphs in cryptography , 2018, IACR Cryptol. ePrint Arch..

[11]  A. Lubotzky HIGH DIMENSIONAL EXPANDERS , 2017, Proceedings of the International Congress of Mathematicians (ICM 2018).

[12]  Nikhil Srivastava,et al.  Interlacing Families IV: Bipartite Ramanujan Graphs of All Sizes , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[13]  Frank Thomson Leighton,et al.  Finite common coverings of graphs , 1982, J. Comb. Theory, Ser. B.

[14]  N. Linial,et al.  DISCREPANCY AND NEARLY OPTIMAL SPECTRAL GAP * , .

[15]  H. Bass,et al.  Uniform tree lattices , 1990 .

[16]  Chris D. Godsil,et al.  ALGEBRAIC COMBINATORICS , 2013 .

[17]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[18]  Audrey Terras,et al.  Zeta Functions of Graphs: A Stroll through the Garden , 2010 .

[19]  W. L. Paschke Lower bound for the norm of a vertex-transitive graph , 1993 .

[20]  Frank Harary,et al.  Graph Theory , 2016 .

[21]  K. Hashimoto Zeta functions of finite graphs and representations of p-adic groups , 1989 .

[22]  Sidhanth Mohanty,et al.  The SDP value for random two-eigenvalue CSPs , 2019, STACS.

[23]  R. Lathe Phd by thesis , 1988, Nature.

[24]  G. Viennot Heaps of Pieces, I: Basic Definitions and Combinatorial Lemmas , 1989 .

[25]  B. Mohar The spectrum of an infinite graph , 1982 .

[26]  Jonathan Leake,et al.  Mixed determinants and the Kadison–Singer problem , 2016, Mathematische Annalen.

[27]  Noga Alon,et al.  Eigenvalues and expanders , 1986, Comb..

[28]  B. M. Fulk MATH , 1992 .

[29]  S. A. Amitsur On the characteristic polynomial of a sum of matrices , 1980 .

[30]  S. Caracciolo,et al.  Grassmann integral representation for spanning hyperforests , 2007, 0706.1509.

[31]  Nikhil Srivastava,et al.  Interlacing families III: Sharper restricted invertibility estimates , 2017, Israel Journal of Mathematics.

[32]  Patrick Solé,et al.  Spectra of Regular Graphs and Hypergraphs and Orthogonal Polynomials , 1996, Eur. J. Comb..

[33]  W. Li,et al.  Number theory with applications , 1996 .

[34]  Chris Hall,et al.  Ramanujan coverings of graphs , 2016, STOC.

[35]  Alexander Lubotzky,et al.  Not Every Uniform Tree Covers Ramanujan Graphs , 1998, J. Comb. Theory, Ser. B.

[36]  Willem H. Haemers,et al.  Spectra of Graphs , 2011 .

[37]  C. Krattenthaler,et al.  THE THEORY OF HEAPS AND THE CARTIER–FOATA MONOID , 2022 .

[39]  Meinolf Geck,et al.  Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras , 2000 .

[40]  Nikhil Srivastava,et al.  Finite free convolutions of polynomials , 2015, Probability Theory and Related Fields.

[41]  Rostislav I. Grigorchuk,et al.  On the asymptotic spectrum of random walks on infinite families of graphs , 1997 .

[42]  J. A. Rodríguez,et al.  Linear and Multilinear Algebra , 2007 .

[43]  Nicolas Bourbaki,et al.  Groupes et algèbres de Lie , 1971 .

[44]  Nathan Linial,et al.  Lifts, Discrepancy and Nearly Optimal Spectral Gap* , 2006, Comb..

[45]  G. Quenell Combinatorics of free product graphs , 1994 .

[46]  Michael Doob,et al.  Spectra of graphs , 1980 .

[47]  P. Sarnak,et al.  Super-Golden-Gates for PU(2) , 2017, 1704.02106.

[48]  Andrea Montanari,et al.  The threshold for SDP-refutation of random regular NAE-3SAT , 2018, SODA.

[49]  Nikhil Srivastava,et al.  Interlacing Families I: Bipartite Ramanujan Graphs of All Degrees , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[50]  W. Woess Random walks on infinite graphs and groups, by Wolfgang Woess, Cambridge Tracts , 2001 .

[51]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[52]  Jean-Pierre Serre,et al.  Répartition asymptotique des valeurs propres de l’opérateur de Hecke _ , 1997 .

[53]  Alicia J. Koll'ar,et al.  Line-Graph Lattices: Euclidean and Non-Euclidean Flat Bands, and Implementations in Circuit Quantum Electrodynamics , 2019, Communications in Mathematical Physics.

[54]  A. C. Aitken,et al.  Determinants and matrices , 1940 .

[55]  Peter L. Hammer,et al.  Discrete Applied Mathematics , 1993 .

[56]  Chris D. Godsil Matchings and walks in graphs , 1981, J. Graph Theory.

[57]  Moshe Morgenstern,et al.  Existence and Explicit Constructions of q + 1 Regular Ramanujan Graphs for Every Prime Power q , 1994, J. Comb. Theory, Ser. B.

[58]  N. Linial,et al.  Lifts, Discrepancy and Nearly Optimal Spectral Gaps , 2003 .