Non-Binary LDPC Code Design for the Poisson PPM Channel

This paper investigates the design of non-binary protograph low-density parity-check codes for the Poisson channel with <inline-formula> <tex-math notation="LaTeX">$m$ </tex-math></inline-formula>-ary pulse position modulation. The field order over which the code is constructed is matched to the pulse position modulation order yielding a coded modulation scheme. The optimization of the low-density parity-check code structure is performed via protograph density evolution on a surrogate <inline-formula> <tex-math notation="LaTeX">$m$ </tex-math></inline-formula>-ary erasure channel. The surrogate design is illustrated to be not only accurate, but also <italic>robust</italic> for a range of practical values of channel background noise and various modulation orders. As a result the proposed codes show excellent performance over the Poisson channel with pulse position modulation outperforming competing schemes. As a side-product of this paper, finite-length benchmarks on the block error probability are provided, together with a union bound to characterize the code performance in the error floor region.

[1]  Dariush Divsalar,et al.  EXIT Function Aided Design of Iteratively Decodable Codes for the Poisson PPM Channel , 2010, IEEE Transactions on Communications.

[2]  Gregory Poltyrev,et al.  Bounds on the decoding error probability of binary linear codes via their spectra , 1994, IEEE Trans. Inf. Theory.

[3]  Dariush Divsalar,et al.  Capacity-approaching protograph codes , 2009, IEEE Journal on Selected Areas in Communications.

[4]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[5]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[6]  Surrogate-channel design of universal LDPC codes , 2006, IEEE Communications Letters.

[7]  H. Vincent Poor,et al.  Channel Coding Rate in the Finite Blocklength Regime , 2010, IEEE Transactions on Information Theory.

[8]  Marco Chiani,et al.  A robust pulse position coded modulation scheme for the Poisson channel , 2014, 2014 IEEE International Conference on Communications (ICC).

[9]  Shlomo Shamai,et al.  Variations on the Gallager bounds, connections, and applications , 2002, IEEE Trans. Inf. Theory.

[10]  Sae-Young Chung,et al.  On the construction of some capacity-approaching coding schemes , 2000 .

[11]  Gerhard Bauch,et al.  Low-Rate Non-Binary LDPC Codes for Coherent and Blockwise Non-Coherent AWGN Channels , 2013, IEEE Transactions on Communications.

[12]  Masahito Hayashi,et al.  Information Spectrum Approach to Second-Order Coding Rate in Channel Coding , 2008, IEEE Transactions on Information Theory.

[13]  Stephan ten Brink,et al.  Convergence behavior of iteratively decoded parallel concatenated codes , 2001, IEEE Trans. Commun..

[14]  Dariush Divsalar,et al.  Accumulate repeat accumulate codes , 2004, ISIT.

[15]  Robert G. Gallager,et al.  A simple derivation of the coding theorem and some applications , 1965, IEEE Trans. Inf. Theory.

[16]  David Burshtein,et al.  Design and analysis of nonbinary LDPC codes for arbitrary discrete-memoryless channels , 2005, IEEE Transactions on Information Theory.

[17]  D. Mackay,et al.  Low density parity check codes over GF(q) , 1998, 1998 Information Theory Workshop (Cat. No.98EX131).

[18]  Robert J. McEliece,et al.  Practical codes for photon communication , 1981, IEEE Trans. Inf. Theory.

[19]  R. Storn,et al.  Design of efficient erasure codes with differential evolution , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[20]  A. M. Viterbi,et al.  Improved union bound on linear codes for the input-binary AWGN channel, with applications to turbo codes , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[21]  Aaron D. Wyner,et al.  Capacity and error-exponent for the direct detection photon channel-Part II , 1988, IEEE Trans. Inf. Theory.

[22]  Evangelos Eleftheriou,et al.  Regular and irregular progressive edge-growth tanner graphs , 2005, IEEE Transactions on Information Theory.

[23]  Marco Chiani,et al.  Non‐binary protograph low‐density parity‐check codes for space communications , 2012, Int. J. Satell. Commun. Netw..

[24]  Igal Sason,et al.  On Universal LDPC Code Ensembles Over Memoryless Symmetric Channels , 2011, IEEE Transactions on Information Theory.

[25]  Amos Lapidoth,et al.  On the Capacity of the Discrete-Time Poisson Channel , 2009, IEEE Transactions on Information Theory.

[26]  Johannes B. Huber,et al.  Information Combining , 2006, Found. Trends Commun. Inf. Theory.

[27]  D. Divsalar A Simple Tight Bound on Error Probability of Block Codes with Application to Turbo Codes , 1999 .

[28]  R. G. Lipes Pulse-Position-Modulation Coding as Near-Optimum Utilization of Photon Counting Channel with Bandwidth and Power Constraints , 1980 .

[29]  Marco Chiani,et al.  Protograph LDPC Codes Design Based on EXIT Analysis , 2007, IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference.

[30]  C. Shannon Probability of error for optimal codes in a Gaussian channel , 1959 .

[31]  A. D. Wyner,et al.  Capacity and error exponent for the direct detection photon channel. II , 1988 .

[32]  J. L. Massey,et al.  Capacity, Cutoff Rate, and Coding for a Direct-Detection Optical Channel , 1981, IEEE Trans. Commun..

[33]  Jon Hamkins,et al.  Coded Modulation for the Deep-Space Optical Channel: Serially Concatenated Pulse-Position Modulation , 2005 .

[34]  Jon Hamkins,et al.  Deep-Space Optical Communications Downlink Budget: Modulation and Coding , 2003 .

[35]  Hamid Hemmati,et al.  Optical Modulation and Coding , 2006 .

[36]  Marco Chiani,et al.  Short Turbo Codes over High Order Fields , 2013, IEEE Transactions on Communications.

[37]  J. G. Skellam The frequency distribution of the difference between two Poisson variates belonging to different populations. , 1946, Journal of the Royal Statistical Society. Series A.

[38]  Richard D. Wesel,et al.  Protograph-based Raptor-like LDPC codes for the binary erasure channel , 2015, 2015 Information Theory and Applications Workshop (ITA).

[39]  J. Thorpe Low-Density Parity-Check (LDPC) Codes Constructed from Protographs , 2003 .

[40]  Gianluigi Ferrari,et al.  Does the Performance of LDPC Codes Depend on the Channel? , 2006, IEEE Transactions on Communications.

[41]  David Declercq,et al.  Design of regular (2,d/sub c/)-LDPC codes over GF(q) using their binary images , 2008, IEEE Transactions on Communications.