Structural effects of clinically observed mutations in JAK2 exons 13-15: comparison with V617F and exon 12 mutations

[1]  Tai-Sung Lee,et al.  Mechanisms of constitutive activation of Janus kinase 2‐V617F revealed at the atomic level through molecular dynamics simulations , 2009, Cancer.

[2]  John A Tainer,et al.  The structure of the MAP2K MEK6 reveals an autoinhibitory dimer. , 2009, Structure.

[3]  Susan S. Taylor,et al.  Pseudokinases: functional insights gleaned from structure. , 2009, Structure.

[4]  H. Kantarjian,et al.  Mutation profile of JAK2 transcripts in patients with chronic myeloproliferative neoplasias. , 2009, The Journal of molecular diagnostics : JMD.

[5]  A. Giorgetti,et al.  Loss of the JAK2 intramolecular auto‐inhibition mechanism is predicted by structural modelling of a novel exon 12 insertion mutation in a case of idiopathic erythrocytosis , 2008, British journal of haematology.

[6]  Stefan N Constantinescu,et al.  Substitution of Pseudokinase Domain Residue Val-617 by Large Non-polar Amino Acids Causes Activation of JAK2* , 2008, Journal of Biological Chemistry.

[7]  E. Clappier,et al.  Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia , 2008, The Journal of experimental medicine.

[8]  C. Niemeyer,et al.  JAK2 mutations other than V617F: a novel mutation and mini review. , 2008, Leukemia research.

[9]  M. Cazzola,et al.  Somatic mutations of JAK2 exon 12 in patients with JAK2 (V617F)-negative myeloproliferative disorders. , 2008, Blood.

[10]  D. Gilliland,et al.  A role for JAK2 mutations in myeloproliferative diseases. , 2008, Annual review of medicine.

[11]  A. Tefferi JAK and MPL mutations in myeloid malignancies , 2008, Leukemia & lymphoma.

[12]  R. Levine,et al.  Advances in the molecular characterization of Philadelphia-negative chronic myeloproliferative disorders , 2007, Current opinion in oncology.

[13]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[14]  R. Skoda Update on the impact of the JAK2 mutation on signalling pathways in myeloproliferative disorders , 2007, European journal of haematology. Supplementum.

[15]  M. Stratton,et al.  JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. , 2007, The New England journal of medicine.

[16]  A. Bagg,et al.  Myeloproliferative Disorders and Myelodysplastic Syndromes , 2007 .

[17]  R. Skoda The genetic basis of myeloproliferative disorders. , 2007, Hematology. American Society of Hematology. Education Program.

[18]  Susan S. Taylor,et al.  Editorial overviewProtein kinases: Catalysis and regulation , 2006 .

[19]  John Kuriyan,et al.  Protein-protein interactions in the allosteric regulation of protein kinases. , 2006, Current opinion in structural biology.

[20]  Tom Alber,et al.  A conserved dimer and global conformational changes in the structure of apo-PknE Ser/Thr protein kinase from Mycobacterium tuberculosis. , 2006, Journal of molecular biology.

[21]  W. Vainchenker,et al.  Detection of JAK2 V617F as a first intention diagnostic test for erythrocytosis , 2006, Leukemia.

[22]  D. Steensma,et al.  JAK2 V617F in myeloid disorders: What do we know now, and where are we headed? , 2006, Leukemia & lymphoma.

[23]  J. Rossjohn,et al.  The structural basis of Janus kinase 2 inhibition by a potent and specific pan-Janus kinase inhibitor. , 2006, Blood.

[24]  T. Kozasa,et al.  Snapshot of Activated G Proteins at the Membrane: The Gαq-GRK2-Gßγ Complex , 2005, Science.

[25]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[26]  M. Wadleigh,et al.  JAK2V617F mutation in essential thrombocythaemia: clinical associations and long‐term prognostic relevance , 2005, British journal of haematology.

[27]  Arvin C. Dar,et al.  Higher-Order Substrate Recognition of eIF2α by the RNA-Dependent Protein Kinase PKR , 2005, Cell.

[28]  D. Oscier,et al.  Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. , 2005, Blood.

[29]  David P Steensma,et al.  The JAK2 V617F activating tyrosine kinase mutation is an infrequent event in both "atypical" myeloproliferative disorders and myelodysplastic syndromes. , 2005, Blood.

[30]  D. Gilliland,et al.  The JAK2V617F tyrosine kinase mutation in myeloproliferative disorders: status report and immediate implications for disease classification and diagnosis. , 2005, Mayo Clinic proceedings.

[31]  Qingshan Li,et al.  Identification of an Acquired JAK2 Mutation in Polycythemia Vera* , 2005, Journal of Biological Chemistry.

[32]  M. Karplus,et al.  Molecular dynamics and protein function. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Stefan N. Constantinescu,et al.  A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera , 2005, Nature.

[34]  Mario Cazzola,et al.  A gain-of-function mutation of JAK2 in myeloproliferative disorders. , 2005, The New England journal of medicine.

[35]  Sandra A. Moore,et al.  Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. , 2005, Cancer cell.

[36]  P. Campbell,et al.  Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders , 2005, The Lancet.

[37]  松山 智洋 What's going on 造血器腫瘍 A gain-of-function mutation of JAK2 in myeloproliferative disorders. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, Tichelli A, Cazzola M, Skoda RC. N Engl J Med. 2005; 352: 1779-90. PMID:15858187.--慢性骨髄増殖性疾患においてJAK2遺伝子の変異が高頻度にみられることを示した論文 , 2005 .

[38]  K. Kaushansky On the molecular origins of the chronic myeloproliferative disorders: it all makes sense. , 2005, Blood.

[39]  Susan S. Taylor,et al.  Regulation of protein kinases; controlling activity through activation segment conformation. , 2004, Molecular cell.

[40]  Hongyi Zhou,et al.  A physical reference state unifies the structure‐derived potential of mean force for protein folding and binding , 2004, Proteins.

[41]  D. Harrison,et al.  The JAK/STAT signaling pathway , 2004, Journal of Cell Science.

[42]  A. Sali,et al.  Modeller: generation and refinement of homology-based protein structure models. , 2003, Methods in enzymology.

[43]  O. Silvennoinen,et al.  The Pseudokinase Domain Is Required for Suppression of Basal Activity of Jak2 and Jak3 Tyrosine Kinases and for Cytokine-inducible Activation of Signal Transduction* , 2002, The Journal of Biological Chemistry.

[44]  S. Hubbard Protein tyrosine kinases: autoregulation and small-molecule inhibition. , 2002, Current opinion in structural biology.

[45]  Fabrizio Giordanetto,et al.  Prediction of the structure of human Janus kinase 2 (JAK2) comprising JAK homology domains 1 through 7. , 2002, Protein engineering.

[46]  J. Berg,et al.  Molecular dynamics simulations of biomolecules , 2002, Nature Structural Biology.

[47]  Alexander D. MacKerell,et al.  CHARMM: The Energy Function and Its Parameterization , 2002 .

[48]  S. Bhattacharya,et al.  Signaling through the JAK/STAT pathway, recent advances and future challenges. , 2002, Gene.

[49]  K. Liedl,et al.  Prediction of the structure of human Janus kinase 2 (JAK2) comprising the two carboxy-terminal domains reveals a mechanism for autoregulation. , 2001, Protein engineering.

[50]  O. Silvennoinen,et al.  Regulation of the Jak2 Tyrosine Kinase by Its Pseudokinase Domain , 2000, Molecular and Cellular Biology.

[51]  L. Notarangelo,et al.  Complex Effects of Naturally Occurring Mutations in the JAK3 Pseudokinase Domain: Evidence for Interactions between the Kinase and Pseudokinase Domains , 2000, Molecular and Cellular Biology.

[52]  J. Kuriyan,et al.  Crystal structure of Hck in complex with a Src family-selective tyrosine kinase inhibitor. , 1999, Molecular cell.

[53]  S. Harrison,et al.  Crystal structures of c-Src reveal features of its autoinhibitory mechanism. , 1999, Molecular cell.

[54]  P. Schleyer Encyclopedia of computational chemistry , 1998 .

[55]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[56]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[57]  C. Brooks Computer simulation of liquids , 1989 .

[58]  U. Singh,et al.  Modeling Complex Molecular Interactions Involving Proteins and DNA a , 1986, Annals of the New York Academy of Sciences.

[59]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[60]  S. Nosé,et al.  Constant pressure molecular dynamics for molecular systems , 1983 .

[61]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[62]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[63]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .

[64]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .