Wasserstein enabled Bayesian optimization of composite functions

[1]  F. Archetti,et al.  Gaussian Process regression over discrete probability measures: on the non-stationarity relation between Euclidean and Wasserstein Squared Exponential Kernels , 2022, ArXiv.

[2]  K. Zygalakis,et al.  Batch Bayesian Optimization via Particle Gradient Flows , 2022, ArXiv.

[3]  Tim Tsz-Kit Lau,et al.  Wasserstein Distributionally Robust Optimization with Wasserstein Barycenters , 2022, 2203.12136.

[4]  Evgeny Burnaev,et al.  Generative Modeling with Optimal Transport Maps , 2021, ICLR.

[5]  Francesco Archetti,et al.  Uncertainty quantification and exploration–exploitation trade-off in humans , 2021, Journal of Ambient Intelligence and Humanized Computing.

[6]  Nicolo Fusi,et al.  Dataset Dynamics via Gradient Flows in Probability Space , 2020, ICML.

[7]  Leonel Rozo,et al.  High-Dimensional Bayesian Optimization via Nested Riemannian Manifolds , 2020, NeurIPS.

[8]  Anna Korba,et al.  The Wasserstein Proximal Gradient Algorithm , 2020, NeurIPS.

[9]  Nicolo Fusi,et al.  Geometric Dataset Distances via Optimal Transport , 2020, NeurIPS.

[10]  Sylvain Calinon,et al.  Bayesian Optimization Meets Riemannian Manifolds in Robot Learning , 2019, CoRL.

[11]  Antonio Candelieri,et al.  Bayesian Optimization and Data Science , 2019, SpringerBriefs in Optimization.

[12]  Guido Sanguinetti,et al.  Parameter estimation for biochemical reaction networks using Wasserstein distances , 2019, Journal of Physics A: Mathematical and Theoretical.

[13]  Jian Peng,et al.  Quantile Stein Variational Gradient Descent for Batch Bayesian Optimization , 2019, ICML.

[14]  K. S. Sesh Kumar,et al.  High-dimensional Bayesian optimization with projections using quantile Gaussian processes , 2019, Optimization Letters.

[15]  Justin Solomon,et al.  Learning Embeddings into Entropic Wasserstein Spaces , 2019, ICLR.

[16]  Lawrence Carin,et al.  Scalable Thompson Sampling via Optimal Transport , 2019, AISTATS.

[17]  Recent Advances in Optimization and Modeling of Contemporary Problems , 2018 .

[18]  P. Frazier Bayesian Optimization , 2018, Hyperparameter Optimization in Machine Learning.

[19]  Lawrence Carin,et al.  Policy Optimization as Wasserstein Gradient Flows , 2018, ICML.

[20]  Antoine Liutkus,et al.  Sliced-Wasserstein Flows: Nonparametric Generative Modeling via Optimal Transport and Diffusions , 2018, ICML.

[21]  Nicolas Courty,et al.  Optimal Transport for structured data with application on graphs , 2018, ICML.

[22]  N. Courty,et al.  Optimal Transport for Multi-source Domain Adaptation under Target Shift , 2018, AISTATS.

[23]  Kirthevasan Kandasamy,et al.  Neural Architecture Search with Bayesian Optimisation and Optimal Transport , 2018, NeurIPS.

[24]  Cheng Li,et al.  Bayesian Optimization in Weakly Specified Search Space , 2017, 2017 IEEE International Conference on Data Mining (ICDM).

[25]  Léon Bottou,et al.  Wasserstein Generative Adversarial Networks , 2017, ICML.

[26]  Dilin Wang,et al.  Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm , 2016, NIPS.

[27]  Kirthevasan Kandasamy,et al.  High Dimensional Bayesian Optimisation and Bandits via Additive Models , 2015, ICML.

[28]  L. Kantorovich On the Translocation of Masses , 2006 .

[29]  W. Gangbo,et al.  Shape recognition via Wasserstein distance , 2000 .

[30]  B. Li,et al.  Distributionally Robust Optimization with Data Geometry , 2022, NeurIPS.

[31]  F. Archetti,et al.  Bayesian Optimization in Wasserstein Spaces , 2022, LION.

[32]  Daniel R. Jiang,et al.  BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization , 2020, NeurIPS.

[33]  Matthias Hein,et al.  Hilbertian Metrics and Positive Definite Kernels on Probability Measures , 2005, AISTATS.