Lattice Boltzmann model for the complex Ginzburg-Landau equation.

A lattice Boltzmann model with complex distribution function for the complex Ginzburg-Landau equation (CGLE) is proposed. By using multiscale technique and the Chapman-Enskog expansion on complex variables, we obtain a series of complex partial differential equations. Then, complex equilibrium distribution function and its complex moments are obtained. Based on this model, the rotation and oscillation properties of stable spiral waves and the breaking-up behavior of unstable spiral waves in CGLE are investigated in detail.

[1]  Chen Yaosong,et al.  Simple lattice Boltzmann model for simulating flows with shock wave , 1999 .

[2]  L. Kramer,et al.  Amplitude equations for description of chemical reaction–diffusion systems , 2000 .

[3]  Gang Hu,et al.  Suppression of spiral waves and spatiotemporal chaos by generating target waves in excitable media. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  C. Shu,et al.  Alternative method to construct equilibrium distribution functions in lattice-Boltzmann method simulation of inviscid compressible flows at high Mach number. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  A. Winfree Spiral Waves of Chemical Activity , 1972, Science.

[6]  Linda Vahala,et al.  Lattice Boltzmann and quantum lattice gas representations of one-dimensional magnetohydrodynamic turbulence , 2003 .

[7]  J. Yepez,et al.  Quantum Lattice-Gas Model for the Burgers Equation , 2002 .

[8]  Jeffrey Yepez,et al.  QUANTUM LATTICE-GAS MODEL FOR THE DIFFUSION EQUATION , 2001 .

[9]  Luo Li-Shi,et al.  Theory of the lattice Boltzmann method: Lattice Boltzmann models for non-ideal gases , 2001 .

[10]  Guangwu Yan,et al.  A higher-order moment method of the lattice Boltzmann model for the Korteweg-de Vries equation , 2009, Math. Comput. Simul..

[11]  J. Jiménez,et al.  Boltzmann Approach to Lattice Gas Simulations , 1989 .

[12]  Jeffrey Yepez,et al.  An efficient and accurate quantum lattice-gas model for the many-body Schrödinger wave equation , 2002 .

[13]  Ping Dong,et al.  Lattice Boltzmann schemes for the nonlinear Schrödinger equation. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Linda Vahala,et al.  Lattice Quantum Algorithm for the Schrödinger Wave Equation in 2+1 Dimensions with a Demonstration by Modeling Soliton Instabilities , 2005, Quantum Inf. Process..

[15]  David J Christini,et al.  Antispiral waves in reaction-diffusion systems. , 2003, Physical review letters.

[16]  Guangwu Yan,et al.  A lattice Boltzmann model for the Korteweg-de Vries equation with two conservation laws , 2009, Comput. Phys. Commun..

[17]  Boon,et al.  Class of cellular automata for reaction-diffusion systems. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  S. Wolfram Cellular automaton fluids 1: Basic theory , 1986 .

[19]  S. Succi,et al.  Three-Dimensional Flows in Complex Geometries with the Lattice Boltzmann Method , 1989 .

[20]  Matthaeus,et al.  Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[21]  Chao-Qing Dai,et al.  Exact solutions of discrete complex cubic Ginzburg-Landau equation via extended tanh-function approach , 2008, Comput. Math. Appl..

[22]  Chenghai Sun,et al.  Lattice-Boltzmann models for high speed flows , 1998 .

[23]  G. Vahala,et al.  Vortex-antivortex pair in a Bose-Einstein condensate , 2009 .

[24]  Yang Guangwu A Lattice Boltzmann Equation for Waves , 2000 .

[25]  A. Zhabotinsky,et al.  Breathing spiral waves in the chlorine dioxide-iodine-malonic acid reaction-diffusion system. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  R. Benzi,et al.  The lattice Boltzmann equation: theory and applications , 1992 .

[27]  T. Kofané,et al.  A collective variable approach for optical solitons in the cubic–quintic complex Ginzburg–Landau equation with third-order dispersion , 2008 .

[28]  Guangwu Yan,et al.  Lattice Boltzmann model for wave propagation. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  J. Yepez,et al.  Quantum lattice-gas model for computational fluid dynamics. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Sauro Succi Lattice Quantum Mechanics: An Application to Bose–Einstein Condensation , 1998 .

[31]  G. Hu,et al.  Sinklike spiral waves in oscillatory media with a disk-shaped inhomogeneity. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Matthaeus,et al.  Lattice Boltzmann model for simulation of magnetohydrodynamics. , 1991, Physical review letters.

[33]  Jeffrey Yepez,et al.  Relativistic Path Integral as a Lattice-based Quantum Algorithm , 2005, Quantum Inf. Process..

[34]  G. Vahala,et al.  Inelastic vector soliton collisions: a lattice–based quantum representation , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[35]  John Abraham,et al.  Three-dimensional multi-relaxation time (MRT) lattice-Boltzmann models for multiphase flow , 2007, J. Comput. Phys..

[36]  Alessandro Torcini,et al.  Doppler effect of nonlinear waves and superspirals in oscillatory media. , 2003, Physical review letters.

[37]  J. Weiss,et al.  Interaction and breakup of inwardly rotating spiral waves in an inhomogeneous oscillatory medium. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Xijun Yu,et al.  Two-dimensional lattice Boltzmann model for compressible flows with high Mach number , 2008, 0801.4169.

[39]  K. Porsezian,et al.  Modulational instability in linearly coupled complex cubic–quintic Ginzburg–Landau equations , 2009 .

[40]  S Succi,et al.  Ground-state computation of Bose-Einstein condensates by an imaginary-time quantum lattice Boltzmann scheme. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  K. M. Bryden,et al.  Parallel performance and accuracy of lattice Boltzmann and traditional finite difference methods for solving the unsteady two-dimensional Burger's equation , 2006 .

[42]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[43]  Jeffrey Yepez,et al.  Simulation of the diffusion equation on a type-II quantum computer , 2002 .

[44]  Linda Vahala,et al.  Twisting of filamentary vortex solitons demarcated by fast Poincaré recursion , 2009, Defense + Commercial Sensing.

[45]  Shiyi Chen,et al.  Lattice Boltzmann computations for reaction‐diffusion equations , 1993 .

[46]  Bastien Chopard,et al.  Lattice Boltzmann Computations and Applications to Physics , 1999, Theor. Comput. Sci..

[47]  I. Aranson,et al.  The world of the complex Ginzburg-Landau equation , 2001, cond-mat/0106115.

[48]  Guangwu Yan,et al.  A lattice Boltzmann model for the nonlinear Schrödinger equation , 2007 .

[49]  Guangwu Yan,et al.  Lattice Bhatnagar—Gross—Krook model for the Lorenz attractor , 2001 .

[50]  Baochang Shi,et al.  Lattice Boltzmann Simulation of Some Nonlinear Complex Equations , 2007, International Conference on Computational Science.

[51]  Jeffrey Yepez,et al.  Lattice-Gas Quantum Computation , 1998 .

[52]  G. Vahala,et al.  Quantum Lattice Representations for Vector Solitons in External Potentials , 2006 .

[53]  Raymond Kapral,et al.  Model for line defects in complex-oscillatory spiral waves. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results , 1993, Journal of Fluid Mechanics.

[55]  Succi Numerical solution of the Schrödinger equation using discrete kinetic theory. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[56]  Succi,et al.  Diffusion and hydrodynamic dispersion with the lattice Boltzmann method. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[57]  A. Garfinkel,et al.  Mechanism for spiral wave breakup in excitable and oscillatory media. , 2003, Physical review letters.

[58]  Robert S. Bernard,et al.  Boundary conditions for the lattice Boltzmann method , 1996 .

[59]  S Succi,et al.  Quantum lattice Boltzmann simulation of expanding Bose-Einstein condensates in random potentials. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  Markus Bär,et al.  Comment on "Antispiral waves in reaction-diffusion systems". , 2004, Physical review letters.

[61]  Jeffrey Yepez,et al.  Quantum Computation of Fluid Dynamics , 1998, QCQC.

[62]  R. Benzi,et al.  Lattice Gas Dynamics with Enhanced Collisions , 1989 .

[63]  Y. Kwon,et al.  Application of lattice Boltzmann method, finite element method, and cellular automata and their coupling to wave propagation problems , 2008 .

[64]  Patrick S. Hagan,et al.  Spiral Waves in Reaction-Diffusion Equations , 1982 .

[65]  Sauro Succi,et al.  Lattice Boltzmann equation for quantum mechanics , 1993, comp-gas/9304002.

[66]  Y. Qian,et al.  Lattice BGK Models for Navier-Stokes Equation , 1992 .

[67]  Meng Zhan,et al.  Chirality effect on the global structure of spiral-domain patterns in the two-dimensional complex Ginzburg-Landau equation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[68]  Zhengde Dai,et al.  Exact homoclinic wave and soliton solutions for the 2D Ginzburg–Landau equation , 2008 .

[69]  O. Filippova,et al.  Lattice-Boltzmann simulation of gas-particle flow in filters , 1997 .

[70]  Hong Zhang,et al.  Spatiotemporal chaos control with a target wave in the complex Ginzburg-Landau equation system. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[71]  Shan,et al.  Lattice Boltzmann model for simulating flows with multiple phases and components. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[72]  Anna L. Lin,et al.  Effect of inhomogeneities on spiral wave dynamics in the Belousov-Zhabotinsky reaction. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[73]  G. Vahala,et al.  Quantum lattice gas representation of some classical solitons , 2003 .

[74]  Y. Pomeau,et al.  Lattice-gas automata for the Navier-Stokes equation. , 1986, Physical review letters.