The spectral envelope and its applications

The concept of the spectral envelope was recently introduced as a statistical basis for the frequency domain analysis and scaling of qualitative-valued time series. In the process of developing the spectral envelope methodology, many other interesting extensions became evi- dent. In this article we explain the basic concept and give numerous ex- amples of the usefulness of the technology. These examples include anal- yses of DNA sequences, finding optimal transformations for the analysis of real-valued time series, residual analysis, detecting common signals in many time series, and the analysis of textures.

[1]  John Turek,et al.  Content-based indexing of earth-observing satellite image database with fuzzy attributes , 1996, Electronic Imaging.

[2]  D. Brillinger Time series - data analysis and theory , 1981, Classics in applied mathematics.

[3]  C. Granger,et al.  A long memory property of stock market returns and a new model , 1993 .

[4]  C. DeLisi,et al.  Hydrophobicity scales and computational techniques for detecting amphipathic structures in proteins. , 1987, Journal of molecular biology.

[5]  G. C. Tiao,et al.  Some advances in non‐linear and adaptive modelling in time‐series , 1994 .

[6]  David S. Stoffer,et al.  Matching sequences : Cross-spectral analysis of categorical time series , 1998 .

[7]  Richard A. Davis,et al.  Time Series: Theory and Methods (2nd ed.). , 1992 .

[8]  A. Walden,et al.  Spectral analysis for physical applications : multitaper and conventional univariate techniques , 1996 .

[9]  Fang Liu,et al.  Periodicity, Directionality, and Randomness: Wold Features for Image Modeling and Retrieval , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  E. J. Hannan,et al.  Multiple time series , 1970 .

[11]  S. Ferryanto On estimation of the walsh-fourier spectral density of two dimensional strictly homogeneous random fields , 1995 .

[12]  James D. Hamilton Time Series Analysis , 1994 .

[13]  Chris Chatfield,et al.  Introduction to Statistical Time Series. , 1976 .

[14]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[15]  Hong-Ye Gao,et al.  Applied wavelet analysis with S-plus , 1996 .

[16]  I. B. MacNeill,et al.  A test of whether several time series share common periodicities , 1977 .

[17]  R. Clarke,et al.  Theory and Applications of Correspondence Analysis , 1985 .

[18]  S. Ogawa,et al.  Oxygenation‐sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields , 1990, Magnetic resonance in medicine.

[19]  David S. Stoffer,et al.  Optimal transformations and the spectral envelope for real-valued time series , 1997 .

[20]  Alain Viari,et al.  A scale-independent signal processing method for sequence analysis , 1990, Comput. Appl. Biosci..

[21]  David S. Stoffer,et al.  Spectral analysis for categorical time series: Scaling and the spectral envelope , 1993 .

[22]  E A Disbrow,et al.  Isoflurane anesthesia blunts cerebral responses to noxious and innocuous stimuli: a fMRI study. , 1997, Life sciences.

[23]  Peter Bloomfield,et al.  Fourier analysis of time series , 1976 .

[24]  David S. Stoffer Detecting Common Signals in Multiple Time Series Using the Spectral Envelope , 1999 .

[25]  M. Bina,et al.  Periodicity of dinucleotides in nucleosomes derived from simian virus 40 chromatin. , 1994, Journal of molecular biology.

[26]  A. Mclachlan,et al.  The 14-fold periodicity in α-tropomyosin and the interaction with actin , 1976 .

[27]  D. Eisenberg,et al.  The hydrophobic moment detects periodicity in protein hydrophobicity. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[28]  J. Friedman,et al.  Projection Pursuit Regression , 1981 .

[29]  J. Friedman,et al.  Estimating Optimal Transformations for Multiple Regression and Correlation. , 1985 .

[30]  J. Leeuw,et al.  The Gifi system of descriptive multivariate analysis , 1998 .

[31]  S. Ogawa,et al.  Magnetic resonance imaging of blood vessels at high fields: In vivo and in vitro measurements and image simulation , 1990, Magnetic resonance in medicine.

[32]  Robin Sibson,et al.  What is projection pursuit , 1987 .

[33]  E. Trifonov,et al.  Preferred positions of AA and TT dinucleotides in aligned nucleosomal DNA sequences. , 1992, Journal of biomolecular structure & dynamics.

[34]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[35]  N. Ahmed,et al.  Discrete Cosine Transform , 1996 .

[36]  西里 静彦,et al.  Analysis of categorical data : dual scaling and its applications , 1980 .

[37]  A. Mclachlan,et al.  The 14-fold periodicity in alpha-tropomyosin and the interaction with actin. , 1976, Journal of molecular biology.

[38]  G. M. Southward,et al.  Analysis of Categorical Data: Dual Scaling and Its Applications , 1981 .

[39]  David S. Stoffer,et al.  WALSH‐FOURIER ANALYSIS OF DISCRETE‐VALUED TIME SERIES , 1987 .

[40]  H. Drew,et al.  Sequence periodicities in chicken nucleosome core DNA. , 1986, Journal of molecular biology.

[41]  C. Chatfield,et al.  Fourier Analysis of Time Series: An Introduction , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[42]  Chris Chatfield,et al.  The Analysis of Time Series: An Introduction , 1981 .

[43]  Martin Vingron,et al.  Sequence Comparison Significance and Poisson Approximation , 1994 .

[44]  David R. Brillinger,et al.  Time Series: Data Analysis and Theory. , 1982 .

[45]  Christos Faloutsos,et al.  QBIC project: querying images by content, using color, texture, and shape , 1993, Electronic Imaging.

[46]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[47]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[48]  David S. Stoffer,et al.  Time series analysis and its applications , 2000 .

[49]  David S. Stoffer,et al.  A Walsh—Fourier Analysis of the Effects of Moderate Maternal Alcohol Consumption on Neonatal Sleep-State Cycling , 1988 .

[50]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .