Crystallographic orientation dependence of impurity incorporation into III‐V compound semiconductors grown by metalorganic vapor phase epitaxy

This article presents a comprehensive study of the dependence of impurity incorporation on the crystallographic orientation during metalorganic vapor phase epitaxy of III‐V compound semiconductors. We performed doping experiments for group‐II impurities (Zn and Mg), group‐VI impurities (Se and O), and a group‐IV impurity (Si form SiH4 and Si2H6). The host materials were GaAs, Ga0.5In0.5P, and (Al0.7Ga0.3)0.5In0.5P grown on GaAs substrates. We examined the doping efficiency on the surfaces lying between {100} and {111}A/B. Even though we grew epitaxial layers in a mass‐transport‐limited regime, the doping efficiency significantly depended on the orientation, indicating that the surface kinetics plays an important role in impurity incorporation. Comparing our results with other reports, we found that acceptor impurities residing on the group‐III sublattice and donor impurities residing on the group‐V sublattice, respectively, have their own distinctive orientation dependence. Si donors exhibit orientation d...

[1]  Oshima,et al.  Temperature-dependent changes on the sulfur-passivated GaAs (111)A, (100), and (111)B surfaces. , 1991, Physical review. B, Condensed matter.

[2]  J. Nijenhuis,et al.  The influence of substrate orientation and mis-orientation on the Si-doping of GaAs grown by MOVPE , 1991 .

[3]  R. Taylor,et al.  Electrical and Optical Properties of Vapor‐Grown GaP , 1968 .

[4]  Rajaram Bhat,et al.  Orientation-dependent doping in organometallic chemical vapor deposition on nonplanar InP substrates: Application to double-heterostructure lasers and lateral p - n junction arrays , 1990 .

[5]  M. Kondô,et al.  One‐step‐metalorganic‐vapor‐phase‐epitaxy‐grown AlGaInP visible laser using simultaneous impurity doping , 1993 .

[6]  M. Kondow,et al.  Zinc-doping of , 1989 .

[7]  Hitoshi Tanaka,et al.  Differences in Si doping efficiency in tertiarybutylarsine, monoethylarsine and arsine for GaAs and AlGaAs grown by MOVPE , 1992 .

[8]  Kamiya,et al.  Surface science at atmospheric pressure: Reconstructions on (001) GaAs in organometallic chemical vapor deposition. , 1992, Physical review letters.

[9]  M. Kondô,et al.  Highly-uniform large-area MOVPE growth of InGaAsP by controlled stagnation point flow , 1991 .

[10]  D. Shaw KINETIC ASPECTS IN THE VAPOUR PHASE EPITAXY OF III–V COMPOUNDS , 1975 .

[11]  C. J. Chen,et al.  Effect of substrate misorientation on the optical properties and hole concentration of Ga0.5In0.5P and (Al0.5Ga0.5)0.5In0.5P grown by low pressure metalorganic vapor phase epitaxy , 1992 .

[12]  C. Caneau,et al.  Dependence of doping on substrate orientation for GaAs: C grown by OMVPE , 1992 .

[13]  M. Mashita Mass Spectrometric Studies on Silicon Doping of OMYPE GaAs , 1989 .

[14]  A. P. Roth,et al.  Tin incorporation in GaAs layers grown by low pressure MOVPE , 1984 .

[15]  S. Kurtz,et al.  Model for incorporation of zinc in MOCVD growth of Ga0.5In0.5P , 1992 .

[16]  R. Blondeau,et al.  A study of the orientation dependence of Ga(Al)As growth by MOVPE , 1986 .

[17]  P. Mooney,et al.  Assessment of oxygen in gallium arsenide by infrared local vibrational mode spectroscopy , 1989 .

[18]  M. D. Croon,et al.  Temperature dependence of silicon doping of GaAs by SiH4 and Si2H6 in atmospheric pressure metalorganic chemical vapour deposition , 1989 .

[19]  B. Meyerson,et al.  A Study of Silicon Incorporation in GaAs MOCVD Layers , 1985 .

[20]  P. Balk,et al.  Sulfur incorporation in VPE GaAs , 1981 .

[21]  L. Esaki,et al.  Crystal orientation dependence of silicon doping in molecular beam epitaxial AlGaAs/GaAs heterostructures , 1985 .

[22]  M. Mihara,et al.  Orientation dependence of GaAs growth in low-pressure OMVPE , 1987 .

[23]  D. Miller Lateral p‐n junction formation in GaAs molecular beam epitaxy by crystal plane dependent doping , 1985 .

[24]  D. Kisker,et al.  13C isotopic labeling studies of growth mechanisms in the metalorganic vapor phase epitaxy of GaAs , 1988 .

[25]  G. Stillman,et al.  Orientation dependent amphoteric behavior of group IV impurities in the molecular beam epitaxial and vapor phase epitaxial growth of GaAs , 1989 .

[26]  M. Kondô,et al.  High-power operation of selfaligned stepped substrate (S/sup 3/) AlGaInP visible laser diode , 1993 .

[27]  F. Trumbore,et al.  Radiative Recombination between Deep‐Donor‐Acceptor Pairs in GaP , 1965 .

[28]  S. Tong,et al.  Vacancy-buckling model for the (2×2) GaAs (111) surface , 1984 .

[29]  W. Bonner,et al.  Orientation dependence of S, Zn, Si, Te, and Sn doping in OMCVD growth of InP and GaAs: application to DH lasers and lateral p—n junction arrays grown on non-planar substrates , 1991 .

[30]  S. Ghandhi,et al.  Doping of gallium arsenide in a low pressure organometallic CVD system: I. Silane , 1986 .

[31]  Masao Kondo,et al.  An Approach for Versatile Highly-Uniform Movpe Growth - the Flow Controlled Stagnation Point Flow Reactor , 1992 .

[32]  P. J. Dean,et al.  Electron-Capture ("Internal") Luminescence from the Oxygen Donor in Gallium Phosphide , 1968 .

[33]  M. Okajima,et al.  Effects of Growth Parameters on Oxygen Incorporation into InGaAlP Grown by Metalorganic Chemical Vapor Deposition , 1993 .

[34]  S. Chu,et al.  Effects of substrate misorientation on incorporation of ambient oxygen and interfacial roughness in AlGaAs/GaAs heterostructures grown by molecular‐beam epitaxy , 1991 .

[35]  M. Kondô,et al.  Analysis of recombination centers in (AlxGa1−x)0.5In0.5P quaternary alloys , 1991 .

[36]  Northrup,et al.  Reconstructions of GaAs(1-bar 1-bar 1-bar) surfaces observed by scanning tunneling microscopy. , 1990, Physical review letters.

[37]  J. V. D. Ven,et al.  Influence of growth parameters on the incorporation of residual impurities in GaAs grown by metalorganic chemical vapor deposition , 1986 .

[38]  K. Jensen,et al.  Gas phase and surface reactions in Si doping of GaAs by silanes , 1988 .

[39]  E. Kapon,et al.  Patterned quantum well heterostructures grown by OMCVD on non-planar substrates: Applications to extremely narrow SQW lasers , 1988 .

[40]  A. Thompson The Effects of Substrate Disorientation on Silicon Doping Efficiency in OMVPE Grown GaAs , 1992 .

[41]  Y. Mori,et al.  Carbon incorporation in metalorganic chemical vapor deposition (Al,Ga)As films grown on (100), (311)A, and (311)B oriented GaAs substrates , 1987 .

[42]  J. I. Davies,et al.  Code: A novel MOVPE technique for the single stage growth of buried ridge double heterostructure lasers and waveguides , 1988 .

[43]  K. Yodoshi,et al.  AlGaInP visible laser diodes grown on misoriented substrates , 1991 .

[44]  Makoto Kondo,et al.  Origin of nonradiative recombination centers in AlGaInP grown by metalorganic vapor phase epitaxy , 1994 .

[45]  J. Merz,et al.  Molecular‐beam‐epitaxial growth and selected properties of GaAs layers and GaAs/(Al,Ga)As superlattices with the (211) orientation , 1986 .

[46]  S. Ghandhi,et al.  Doping of gallium arsenide in a low pressure organometallic CVD system: II. Hydrogen sulfide , 1986 .

[47]  Mariko Suzuki,et al.  Effects of substrate misorientation on doping characteristics and band gap energy for InGaAlP crystals grown by metalorganic chemical vapor deposition , 1991 .

[48]  Klavs F. Jensen,et al.  Three‐Dimensional Flow Effects in Silicon CVD in Horizontal Reactors , 1988 .

[49]  G. Scilla,et al.  Quantitative oxygen measurements in OMVPE AlxGa1−xAs grown by methyl precursors , 1992 .

[50]  Masaki Okajima,et al.  Reduction of residual oxygen incorporation and deep levels by substrate misorientation in InGaAlP alloys , 1993 .

[51]  K. Adomi,et al.  Characterization of AiGaP/GaP Heterostructures Grown by MOVPE , 1992 .

[52]  L. Keizer,et al.  Doping of gallium arsenide in MOCVD: Equilibrium calculations , 1990 .

[53]  H. Asai Anisotropic lateral growth in GaAs MOCVD layers on (001) substrates , 1987 .

[54]  W. Ge,et al.  Model study of the local vibration center related to EL2 levels in GaAs , 1988 .

[55]  M. Kondô,et al.  Crystal Orientation Dependence of Impurity Dopant Incorporation in MOVPE-grown III-V Materials , 1992 .

[56]  Masao Kondo,et al.  Simultaneous impurity doping with Zn and Se in AlGaInP by MOVPE , 1993 .

[57]  T. Kuech,et al.  Mechanism of carbon incorporation in MOCVD GaAs , 1984 .

[58]  David J. Webb,et al.  High‐power fundamental mode AlGaAs quantum well channeled substrate laser grown by molecular beam epitaxy , 1989 .

[59]  Wen Wang,et al.  Novel crystal growth of AlGaAs/GaAs heterostructures on polar surfaces , 1986 .

[60]  S. Ando,et al.  Orientation Effects in GaP Vapor Phase Epitaxial Growth , 1969 .

[61]  M. D. Croon,et al.  Si-doping of MOCVD GaAs: Closer analysis of the incorporation process , 1989 .

[62]  G. Scilla,et al.  The control and modeling of doping profiles and transients in MOVPE growth , 1988 .

[63]  Takashi Fukui,et al.  (AlAs)1/2(GaAs)1/2 fractional‐layer superlattices grown on (001) vicinal GaAs substrates by metal–organic chemical vapor deposition , 1988 .

[64]  G. B. Stringfellow The role of impurities in III/V semiconductors grown by organometallic vapor phase epitaxy , 1986 .

[65]  R. Taylor Behavior of Te in Vapor‐Grown GaP , 1971 .

[66]  J. J. Yang,et al.  Electrical properties of epitaxial indium phosphide films grown by metalorganic chemical vapor deposition , 1981 .