A Distortion Cancelation Technique With the Recursive DFT Method for Successive Approximation Analog-to-Digital Converters

This paper proposes a recursive discrete Fourier transform (RDFT) foreground digital calibration method for successive approximation (SAR) analog-to-digital converters (ADCs). This calibration method can lower the harmonic distortion caused by capacitor mismatch and dc offset of comparators to improve the resolution and performance of ADCs. Capacitor mismatch results in a digital-to-analog converter (DAC) capacitor array that is unequal to 2n. RDFT can be adopted to evaluate the real radixes of a DAC capacitor array with a new digital output to compensate for the error caused by capacitor mismatch. Furthermore, the calibration technique can eliminate the dc offset error of a comparator circuit. The proposed novel digital calibration method that utilizes RDFT instead of the traditional fast Fourier transform has the advantages of variable transform length, lower complexity, faster computation, and less hardware cost. The analog block of SAR ADC with RDFT is implemented in the TSMC 0.18-μm standard CMOS process with a 200-kS/s sampling rate to validate the proposed method. Simulation results show that the total harmonic distortion (THD) is 64.97 dB before calibration, whereas a THD of 73.05 dB can be achieved after calibration. In addition, the effective bit numbers are 9.98 and 11.26 b before and after calibration, respectively.

[1]  Shuenn-Yuh Lee,et al.  FFT-based calibration method for 1.5 bit/stage pipelined ADCs , 2015, Int. J. Circuit Theory Appl..

[2]  P. K. Chan,et al.  A CMOS analog front-end IC for portable EEG/ECG monitoring applications , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[3]  Gordon W. Roberts,et al.  An Introduction to Mixed-Signal IC Test and Measurement , 2000 .

[4]  Shuenn-Yuh Lee,et al.  VLSI implementation of programmable FFT architectures for OFDM communication system , 2006, IWCMC '06.

[5]  Yong Lian,et al.  A 1-V 450-nW Fully Integrated Programmable Biomedical Sensor Interface Chip , 2009, IEEE Journal of Solid-State Circuits.

[6]  David A. Hodges,et al.  Accuracy considerations in self- calibrating A/D converters , 1985 .

[7]  Franziska Hoffmann,et al.  Design Of Analog Cmos Integrated Circuits , 2016 .

[8]  Wei-Song Wang,et al.  Adaptive successive approximation ADC for biomedical acquisition system , 2013, Microelectron. J..

[9]  F. Kuttner,et al.  A 1.2V 10b 20MSample/s non-binary successive approximation ADC in 0.13μm CMOS , 2002 .

[10]  Soon-Jyh Chang,et al.  A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure , 2010, IEEE Journal of Solid-State Circuits.

[11]  F. Kuttner A 1.2V 10b 20MSample/s non-binary successive approximation ADC in 0.13/spl mu/m CMOS , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[12]  Refet Firat Yazicioglu,et al.  A 60 $\mu$W 60 nV/$\surd$Hz Readout Front-End for Portable Biopotential Acquisition Systems , 2007, IEEE Journal of Solid-State Circuits.

[13]  Jae-Yoon Sim,et al.  A Digital-Domain Calibration of Split-Capacitor DAC for a Differential SAR ADC Without Additional Analog Circuits , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[14]  R.W. Brodersen,et al.  A 6-bit 600-MS/s 5.3-mW Asynchronous ADC in 0.13-$\mu{\hbox{m}}$ CMOS , 2006, IEEE Journal of Solid-State Circuits.

[15]  P.R. Kinget Device mismatch and tradeoffs in the design of analog circuits , 2005, IEEE Journal of Solid-State Circuits.

[16]  Ching-Hsing Luo,et al.  Low Computational Complexity, Low Power, and Low Area Design for the Implementation of Recursive DFT and IDFT Algorithms , 2009, IEEE Transactions on Circuits and Systems II: Express Briefs.

[17]  Michael C. W. Coln,et al.  All-Digital Background Calibration of a Successive Approximation ADC Using the “Split ADC” Architecture , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[18]  Robert W. Brodersen,et al.  A 6-bit 600-MS/s 5.3-mW asynchronous ADC in 0.13-μm CMOS , 2006 .

[19]  George Jie Yuan,et al.  Digitally Calibrated 768-kS/s 10-b Minimum-Size SAR ADC Array With Dithering , 2012, IEEE Journal of Solid-State Circuits.

[20]  Guanhua Wang,et al.  IRD Digital Background Calibration of SAR ADC With Coarse Reference ADC Acceleration , 2014, IEEE Transactions on Circuits and Systems II: Express Briefs.