A $24\,\mu \text{W}$, Batteryless, Crystal-free, Multinode Synchronized SoC “Bionode” for Wireless Prosthesis Control

We present a batteryless, crystal-free, time division multiple access (TDMA) synchronized multinode wireless body sensor node (WBSN) system-on-chip (SoC), referred to as a Bionode, for continuous and real-time telemetry of electromyograms (EMGs), enabling intuitive upper limb prosthesis control by an amputee. The SoC utilizes state of the art in supercapacitive RF energy harvesting, biosensing analog-front-end, switchingoptimized SAR ADC, ultra-low-power RF transceiver, and clock circuits. The sensor node SoCs are time synchronized with a base station, mounted on the prosthetic arm, by using the ultra-lowpower TDMA controller and receiver, and the digital core circuits. A 915 MHz broadcast RF signal is utilized to synthesize the carrier frequency of the transmitter. This along with the process and voltage compensated on-chip clock obviates the need for a bulky crystal oscillator, thus providing a low-cost and highly integrated solution to the WBSNs. The SoC is verified by capturing the EMG data from a healthy human body and consumes only 24 μW, while operating exclusively from the harvested RF energy. Implemented in a 0.18 μm CMOS process, the SoC occupies 2.025 mm2 silicon area. The sensor node has an extremely low weight and physical dimensions, thanks to the flexible carbon nanotube (CNT) supercapacitor, electrically small antenna (ESA), and crystal-free operation of the SoC.

[1]  Dimitrios Peroulis,et al.  A Wireless Condition Monitoring System Powered by a Sub-100 /spl mu/W Vibration Energy Harvester , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  J. F. Dickson,et al.  On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique , 1976 .

[3]  Yong Lian,et al.  A 1-V 450-nW Fully Integrated Programmable Biomedical Sensor Interface Chip , 2009, IEEE Journal of Solid-State Circuits.

[4]  H.A. Wheeler,et al.  Fundamental Limitations of Small Antennas , 1947, Proceedings of the IRE.

[5]  Yanqing Zhang,et al.  21.3 A 6.45μW self-powered IoT SoC with integrated energy-harvesting power management and ULP asymmetric radios , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[6]  Joshua R. Smith,et al.  Neuralwisp: a Wirelessly Powered Neural Interface with 1-m Range , 2022 .

[7]  Refet Firat Yazicioglu,et al.  18.3 A multi-parameter signal-acquisition SoC for connected personal health applications , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[8]  Daniel McDonnall,et al.  Implantable multichannel wireless electromyography for prosthesis control , 2012, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[9]  Refet Firat Yazicioglu,et al.  A Configurable and Low-Power Mixed Signal SoC for Portable ECG Monitoring Applications , 2011, IEEE Transactions on Biomedical Circuits and Systems.

[10]  Robert D. Lipschutz,et al.  Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: a case study , 2007, The Lancet.

[11]  Ali M. Niknejad,et al.  The Speed–Power Trade-Off in the Design of CMOS True-Single-Phase-Clock Dividers , 2010, IEEE Journal of Solid-State Circuits.

[12]  Anantha Chandrakasan,et al.  An 8-Channel Scalable EEG Acquisition SoC With Patient-Specific Seizure Classification and Recording Processor , 2013, IEEE Journal of Solid-State Circuits.

[13]  Pedro P. Irazoqui,et al.  A 2-MHZ, process and voltage compensated clock oscillator for biomedical implantable SoC in 0.18-μm CMOS , 2013, 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013).

[14]  Giuseppe Palmisano,et al.  A 90-nm CMOS Threshold-Compensated RF Energy Harvester , 2011, IEEE Journal of Solid-State Circuits.

[15]  Rahul Sarpeshkar,et al.  An Energy-Efficient Micropower Neural Recording Amplifier , 2007, IEEE Transactions on Biomedical Circuits and Systems.

[17]  Giuseppe Palmisano,et al.  A 90-nm CMOS 5-Mbps Crystal-Less RF-Powered Transceiver for Wireless Sensor Network Nodes , 2014, IEEE Journal of Solid-State Circuits.

[18]  Patrick Chiang,et al.  0.56 V, –20 dBm RF-Powered, Multi-Node Wireless Body Area Network System-on-a-Chip With Harvesting-Efficiency Tracking Loop , 2014, IEEE Journal of Solid-State Circuits.

[19]  P.J. Hurst,et al.  A Full-Wave Rectifier With Integrated Peak Selection for Multiple Electrode Piezoelectric Energy Harvesters , 2009, IEEE Journal of Solid-State Circuits.

[20]  Jan M. Rabaey,et al.  24.1 A miniaturized 64-channel 225μW wireless electrocorticographic neural sensor , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[21]  Kai Strunz,et al.  A 20 mV Input Boost Converter With Efficient Digital Control for Thermoelectric Energy Harvesting , 2010, IEEE Journal of Solid-State Circuits.

[22]  Yu-Te Liao,et al.  A 3-$\mu\hbox{W}$ CMOS Glucose Sensor for Wireless Contact-Lens Tear Glucose Monitoring , 2012, IEEE Journal of Solid-State Circuits.

[23]  Young-Joon Kim,et al.  An Ultra-Low-Power RF Energy-Harvesting Transceiver for Multiple-Node Sensor Application , 2015, IEEE Transactions on Circuits and Systems II: Express Briefs.

[24]  Franco Maloberti,et al.  A 60-dB dynamic-range CMOS sixth-order 2.4-Hz low-pass filter for medical applications , 2000 .

[25]  Fan Zhang,et al.  A Batteryless 19 $\mu$W MICS/ISM-Band Energy Harvesting Body Sensor Node SoC for ExG Applications , 2013, IEEE Journal of Solid-State Circuits.

[26]  M. Swiontkowski Targeted Muscle Reinnervation for Real-time Myoelectric Control of Multifunction Artificial Arms , 2010 .

[27]  Naveen Verma,et al.  A Micro-Power EEG Acquisition SoC With Integrated Feature Extraction Processor for a Chronic Seizure Detection System , 2010, IEEE Journal of Solid-State Circuits.

[28]  Pedro P Irazoqui,et al.  A flexible super-capacitive solid-state power supply for miniature implantable medical devices , 2013, Biomedical microdevices.

[29]  Jan M. Rabaey,et al.  A Fully-Integrated, Miniaturized (0.125 mm²) 10.5 µW Wireless Neural Sensor , 2013, IEEE Journal of Solid-State Circuits.

[30]  Yvonne Schuhmacher,et al.  Rfid Handbook Fundamentals And Applications In Contactless Smart Cards And Identification , 2016 .

[31]  R. R. Harrison,et al.  A low-power low-noise CMOS amplifier for neural recording applications , 2003, IEEE J. Solid State Circuits.

[32]  David Blaauw,et al.  Circuits for a Cubic-Millimeter Energy-Autonomous Wireless Intraocular Pressure Monitor , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.