Lost in translation: an assessment and perspective for computational microRNA target identification

UNLABELLED MicroRNAs (miRNAs) are a class of short endogenously expressed RNA molecules that regulate gene expression by binding directly to the messenger RNA of protein coding genes. They have been found to confer a novel layer of genetic regulation in a wide range of biological processes. Computational miRNA target prediction remains one of the key means used to decipher the role of miRNAs in development and disease. Here we introduce the basic idea behind the experimental identification of miRNA targets and present some of the most widely used computational miRNA target identification programs. The review includes an assessment of the prediction quality of these programs and their combinations. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.

[1]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[2]  B. Reinhart,et al.  The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans , 2000, Nature.

[3]  V. Ambros,et al.  An Extensive Class of Small RNAs in Caenorhabditis elegans , 2001, Science.

[4]  L. Lim,et al.  An Abundant Class of Tiny RNAs with Probable Regulatory Roles in Caenorhabditis elegans , 2001, Science.

[5]  T. Tuschl,et al.  Identification of Novel Genes Coding for Small Expressed RNAs , 2001, Science.

[6]  D. Marks,et al.  The small RNA profile during Drosophila melanogaster development. , 2003, Developmental cell.

[7]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[8]  A. Hatzigeorgiou,et al.  A combined computational-experimental approach predicts human microRNA targets. , 2004, Genes & development.

[9]  J. M. Thomson,et al.  Argonaute2 Is the Catalytic Engine of Mammalian RNAi , 2004, Science.

[10]  D. Bartel,et al.  MicroRNAs Modulate Hematopoietic Lineage Differentiation , 2004, Science.

[11]  G. Hannon,et al.  Processing of primary microRNAs by the Microprocessor complex , 2004, Nature.

[12]  John G Doench,et al.  Specificity of microRNA target selection in translational repression. , 2004, Genes & development.

[13]  Anton J. Enright,et al.  Human MicroRNA Targets , 2004, PLoS biology.

[14]  C. Croce,et al.  The role of microRNA genes in papillary thyroid carcinoma. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[15]  C. Croce,et al.  MicroRNA gene expression deregulation in human breast cancer. , 2005, Cancer research.

[16]  J. Castle,et al.  Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs , 2005, Nature.

[17]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[18]  S. Lowe,et al.  A microRNA polycistron as a potential human oncogene , 2005, Nature.

[19]  H. Horvitz,et al.  MicroRNA Expression in Zebrafish Embryonic Development , 2005, Science.

[20]  C. Kidner,et al.  The developmental role of microRNA in plants. , 2005, Current opinion in plant biology.

[21]  C. Croce,et al.  miRNAs, Cancer, and Stem Cell Division , 2005, Cell.

[22]  N. Rajewsky,et al.  Silencing of microRNAs in vivo with ‘antagomirs’ , 2005, Nature.

[23]  Mihaela Zavolan,et al.  Inference of miRNA targets using evolutionary conservation and pathway analysis , 2007, BMC Bioinformatics.

[24]  R. Stephens,et al.  Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. , 2006, Cancer cell.

[25]  F. Dietrich,et al.  Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs , 2006, Nature Genetics.

[26]  C. Croce,et al.  MicroRNA expression and function in cancer. , 2006, Trends in molecular medicine.

[27]  A. Hatzigeorgiou,et al.  A guide through present computational approaches for the identification of mammalian microRNA targets , 2006, Nature Methods.

[28]  Yvonne Tay,et al.  A Pattern-Based Method for the Identification of MicroRNA Binding Sites and Their Corresponding Heteroduplexes , 2006, Cell.

[29]  C. Croce,et al.  MicroRNA signatures in human cancers , 2006, Nature Reviews Cancer.

[30]  F. Slack,et al.  Oncomirs — microRNAs with a role in cancer , 2006, Nature Reviews Cancer.

[31]  F. Slack,et al.  MicroRNAs as a potential magic bullet in cancer. , 2006, Future oncology.

[32]  Colin N. Dewey,et al.  A Genome-Wide Map of Conserved MicroRNA Targets in C. elegans , 2006, Current Biology.

[33]  Anindya Dutta,et al.  The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. , 2007, Genes & development.

[34]  G. Meister,et al.  Identification of Human microRNA Targets From Isolated Argonaute Protein Complexes , 2007, RNA biology.

[35]  Shuomin Zhu,et al.  miR-21-mediated tumor growth , 2007, Oncogene.

[36]  J. M. Thomson,et al.  Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. , 2007, Developmental biology.

[37]  R. Weinberg,et al.  Tumour invasion and metastasis initiated by microRNA-10b in breast cancer , 2007, Nature.

[38]  H. Tagawa,et al.  Synergistic action of the microRNA‐17 polycistron and Myc in aggressive cancer development , 2007, Cancer science.

[39]  F. Slack,et al.  The let-7 microRNA represses cell proliferation pathways in human cells. , 2007, Cancer research.

[40]  N. Baroukh,et al.  MicroRNA-124a Regulates Foxa2 Expression and Intracellular Signaling in Pancreatic β-Cell Lines* , 2007, Journal of Biological Chemistry.

[41]  Thomas D. Schmittgen,et al.  Expression profiling identifies microRNA signature in pancreatic cancer , 2006, International journal of cancer.

[42]  J. Steitz,et al.  Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR , 2007, Proceedings of the National Academy of Sciences.

[43]  Michael Kertesz,et al.  The role of site accessibility in microRNA target recognition , 2007, Nature Genetics.

[44]  S. Landais,et al.  Oncogenic potential of the miR-106-363 cluster and its implication in human T-cell leukemia. , 2007, Cancer research.

[45]  M. Fabbri,et al.  Regulatory mechanisms of microRNAs involvement in cancer , 2007, Expert opinion on biological therapy.

[46]  L. Lim,et al.  MicroRNA targeting specificity in mammals: determinants beyond seed pairing. , 2007, Molecular cell.

[47]  C. Croce,et al.  Investigation of microRNA alterations in leukemias and lymphomas. , 2007, Methods in enzymology.

[48]  Dang D. Long,et al.  Potent effect of target structure on microRNA function , 2007, Nature Structural &Molecular Biology.

[49]  J. Yates,et al.  Systematic identification of C. elegans miRISC proteins, miRNAs, and mRNA targets by their interactions with GW182 proteins AIN-1 and AIN-2. , 2007, Molecular cell.

[50]  George Easow,et al.  Isolation of microRNA targets by miRNP immunopurification. , 2007, RNA.

[51]  W. Gerald,et al.  Endogenous human microRNAs that suppress breast cancer metastasis , 2008, Nature.

[52]  A. Delacourte,et al.  Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/β-secretase expression , 2008, Proceedings of the National Academy of Sciences.

[53]  Stijn van Dongen,et al.  miRBase: tools for microRNA genomics , 2007, Nucleic Acids Res..

[54]  Chunxiang Zhang MicroRNAs: role in cardiovascular biology and disease. , 2008, Clinical science.

[55]  Yvonne Tay,et al.  MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation , 2008, Nature.

[56]  H. Allgayer,et al.  MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer , 2008, Oncogene.

[57]  A. Gartel,et al.  miRNAs: Little known mediators of oncogenesis. , 2008, Seminars in cancer biology.

[58]  L. Lim,et al.  MicroRNAs in the miR-106b Family Regulate p21/CDKN1A and Promote Cell Cycle Progression , 2008, Molecular and Cellular Biology.

[59]  Lin Zhang,et al.  The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis , 2008, Nature Cell Biology.

[60]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[61]  Dang D. Long,et al.  mirWIP: microRNA target prediction based on microRNA-containing ribonucleoprotein–enriched transcripts , 2008, Nature Methods.

[62]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[63]  M. Cleary,et al.  Combinatorial microRNAs: Working together to make a difference , 2008, Cell cycle.

[64]  Shuomin Zhu,et al.  MicroRNA-21 targets tumor suppressor genes in invasion and metastasis , 2008, Cell Research.

[65]  C. Burge,et al.  Most mammalian mRNAs are conserved targets of microRNAs. , 2008, Genome research.

[66]  Nectarios Koziris,et al.  Accurate microRNA target prediction correlates with protein repression levels , 2009, BMC Bioinformatics.

[67]  Martin Reczko,et al.  The database of experimentally supported targets: a functional update of TarBase , 2008, Nucleic Acids Res..

[68]  A. Mele,et al.  Ago HITS-CLIP decodes miRNA-mRNA interaction maps , 2009, Nature.

[69]  N. Beauchemin,et al.  Metastasis of Colorectal Cancer , 2010 .