Gorenstein coresolving categories

ABSTRACT Let 𝒜 be an abelian category. A subcategory 𝒳 of 𝒜 is called coresolving if 𝒳 is closed under extensions and cokernels of monomorphisms and contains all injective objects of 𝒜. In this paper, we introduce and study Gorenstein coresolving categories, which unify the following notions: Gorenstein injective modules [8], Gorenstein FP-injective modules [20], Gorenstein AC-injective modules [3], and so on. Then we define a resolution dimension relative to the Gorenstein coresolving category 𝒢ℐ𝒳(𝒜). We investigate the properties of the homological dimension and unify some important properties possessed by some known homological dimensions. In addition, we study stability of the Gorenstein coresolving category 𝒢ℐ𝒳(𝒜) and apply the obtained properties to special subcategories and in particular to module categories.

[1]  Zenghui Gao Homological Properties Relative to Injectively Resolving Subcategories , 2015, Canadian Mathematical Bulletin.

[2]  Zenghui Gao,et al.  Weak Injective and Weak Flat Modules , 2015 .

[3]  D. Bravo,et al.  Absolutely Clean, Level, and Gorenstein AC-Injective Complexes , 2014, 1408.7089.

[4]  Mark Hovey,et al.  The stable module category of a general ring , 2014, 1405.5768.

[5]  Tiwei Zhao,et al.  Gorenstein homological properties from coherent rings to arbitrary rings , 2014 .

[6]  Jianmin Shao Strongly ω-Gorenstein Modules , 2013 .

[7]  Xiaosheng Zhu Resolving Resolution Dimensions , 2013 .

[8]  Pu Zhang,et al.  From CM-finite to CM-free , 2012, 1212.6184.

[9]  James Gillespie Gorenstein complexes and recollements from cotorsion pairs , 2012, 1210.0196.

[10]  Zhaoyong Huang Proper Resolutions and Gorenstein Categories , 2012, 1203.4110.

[11]  Xiaoyan Yang,et al.  Gorenstein Projective, Injective, and Flat Complexes , 2011 .

[12]  Yuxian Geng,et al.  W-Gorenstein modules , 2011 .

[13]  S. Arabia,et al.  X-Gorenstein Projective Modules , 2010 .

[14]  Overtoun M. G. Jenda,et al.  Relative homological algebra , 1956 .

[15]  James Gillespie Model structures on modules over Ding-Chen rings , 2009, 0910.1942.

[16]  Yuanlin Li,et al.  STRONGLY GORENSTEIN FLAT MODULES , 2009, Journal of the Australian Mathematical Society.

[17]  Liu Zhongkui,et al.  Gorenstein injective complexes of modules over Noetherian rings , 2009 .

[18]  Nanqing Ding,et al.  Notes on Divisible and Torsionfree Modules , 2008 .

[19]  Nanqing Ding,et al.  GORENSTEIN FP-INJECTIVE AND GORENSTEIN FLAT MODULES , 2008 .

[20]  S. Sather-Wagstaff,et al.  Stability of Gorenstein categories , 2007, math/0703644.

[21]  Overtoun M. G. Jenda,et al.  Covers and Envelopes by V-Gorenstein Modules , 2005 .

[22]  Henrik Holm,et al.  Gorenstein homological dimensions , 2004 .

[23]  Overtoun M. G. Jenda,et al.  Gorenstein injective and projective modules , 1995 .

[24]  E. Enochs Injective and flat covers, envelopes and resolvents , 1981 .

[25]  M. Bridger,et al.  Stable Module Theory , 1969 .