On the Length of a Random Minimum Spanning Tree

We study the expected value of the length Ln of the minimum spanning tree of the complete graph Kn when each edge e is given an independent uniform [0,1] edge weight. We sharpen the result of Frieze [6] that limn!1 E(Ln) = ζ(3) and show that E(Ln) = ζ(3)+ c 1 n +

[1]  Svante Janson,et al.  The Minimal Spanning Tree in a Complete Graph and a Functional Limit Theorem for Trees in a Random Graph , 1995, Random Struct. Algorithms.

[2]  Peter T. Otto,et al.  Polynomial Representation for the Expected Length of Minimal Spanning Trees , 2015, 1501.03758.

[3]  Svante Janson Multicyclic Components in a Random Graph Process , 1993, Random Struct. Algorithms.

[4]  Alan M. Frieze,et al.  On the value of a random minimum spanning tree problem , 1985, Discret. Appl. Math..

[5]  Svante Janson,et al.  A Point Process Describing the Component Sizes in the Critical Window of the Random Graph Evolution , 2007, Comb. Probab. Comput..

[6]  Svante Janson,et al.  The Birth of the Giant Component , 1993, Random Struct. Algorithms.

[7]  C. McDiarmid,et al.  On random minimum length spanning trees , 1989 .

[8]  David Gamarnik The expected value of random minimal length spanning tree of a complete graph , 2005, SODA '05.

[9]  Philippe Flajolet,et al.  Mathematics and Computer Science II , 2002 .

[10]  Svante Janson,et al.  The Center of Mass of the ISE and the Wiener Index of Trees , 2003, math/0309284.

[11]  J. Michael Steele,et al.  Exact Expectations of Minimal Spanning Trees for Graphs With Random Edge Weights , 2005 .

[12]  Alan M. Frieze,et al.  A Note on Random Minimum Length Spanning Trees , 2000, Electron. J. Comb..

[13]  G. Louchard The brownian excursion area: a numerical analysis , 1984 .

[14]  J. Michael Steele,et al.  On Frieze's χ(3) limit for lengths of minimal spanning trees , 1987, Discret. Appl. Math..

[15]  Guy Louchard,et al.  KAC'S FORMULA, LEVY'S LOCAL TIME AND BROWNIAN EXCURSION , 1984 .

[16]  Joel Spencer ENUMERATING GRAPHS AND BROWNIAN MOTION , 1997 .

[17]  Abraham D. Flaxman,et al.  The Lower Tail of the Random Minimum Spanning Tree , 2007, Electron. J. Comb..

[18]  Béla Bollobás,et al.  Random Graphs: Notation , 2001 .

[19]  M. Penrose Random minimal spanning tree and percolation on the N -cube , 1998 .

[20]  N. Read,et al.  Minimum spanning trees and random resistor networks in d dimensions. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  N. Alon,et al.  The Probabilistic Method: Alon/Probabilistic , 2008 .

[22]  J. Michael Steele,et al.  Minimal Spanning Trees for Graphs with Random Edge Lengths , 2002 .

[23]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[24]  Svante Janson,et al.  Random graphs , 2000, Wiley-Interscience series in discrete mathematics and optimization.

[25]  Johan Wästlund An easy proof of the $\zeta(2)$ limit in the random assignment problem , 2009 .

[26]  Johan Wästlund AN EASY PROOF OF THE ζ ( 2 ) LIMIT IN THE RANDOM ASSIGNMENT PROBLEM , 2006 .

[27]  Alan M. Frieze,et al.  Random Minimum Length Spanning Trees in Regular Graphs , 1998, Comb..

[28]  Guy Louchard,et al.  Tail estimates for the Brownian excursion area and other Brownian areas , 2007 .

[29]  Xinyi Zhang,et al.  On the Difference of Expected Lengths of Minimum Spanning Trees , 2009, Combinatorics, Probability and Computing.

[30]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[31]  Svante Janson,et al.  Brownian excursion area, Wright’s constants in graph enumeration, and other Brownian areas , 2007, 0704.2289.

[32]  Edward M. Wright,et al.  The number of connected sparsely edged graphs , 1977, J. Graph Theory.

[33]  Béla Bollobás,et al.  Random Graphs, Second Edition , 2001, Cambridge Studies in Advanced Mathematics.