On the Length of a Random Minimum Spanning Tree
暂无分享,去创建一个
Alan M. Frieze | Svante Janson | Joel H. Spencer | Colin Cooper | Nate Ince | J. Spencer | S. Janson | A. Frieze | C. Cooper | Nate Ince
[1] Svante Janson,et al. The Minimal Spanning Tree in a Complete Graph and a Functional Limit Theorem for Trees in a Random Graph , 1995, Random Struct. Algorithms.
[2] Peter T. Otto,et al. Polynomial Representation for the Expected Length of Minimal Spanning Trees , 2015, 1501.03758.
[3] Svante Janson. Multicyclic Components in a Random Graph Process , 1993, Random Struct. Algorithms.
[4] Alan M. Frieze,et al. On the value of a random minimum spanning tree problem , 1985, Discret. Appl. Math..
[5] Svante Janson,et al. A Point Process Describing the Component Sizes in the Critical Window of the Random Graph Evolution , 2007, Comb. Probab. Comput..
[6] Svante Janson,et al. The Birth of the Giant Component , 1993, Random Struct. Algorithms.
[7] C. McDiarmid,et al. On random minimum length spanning trees , 1989 .
[8] David Gamarnik. The expected value of random minimal length spanning tree of a complete graph , 2005, SODA '05.
[9] Philippe Flajolet,et al. Mathematics and Computer Science II , 2002 .
[10] Svante Janson,et al. The Center of Mass of the ISE and the Wiener Index of Trees , 2003, math/0309284.
[11] J. Michael Steele,et al. Exact Expectations of Minimal Spanning Trees for Graphs With Random Edge Weights , 2005 .
[12] Alan M. Frieze,et al. A Note on Random Minimum Length Spanning Trees , 2000, Electron. J. Comb..
[13] G. Louchard. The brownian excursion area: a numerical analysis , 1984 .
[14] J. Michael Steele,et al. On Frieze's χ(3) limit for lengths of minimal spanning trees , 1987, Discret. Appl. Math..
[15] Guy Louchard,et al. KAC'S FORMULA, LEVY'S LOCAL TIME AND BROWNIAN EXCURSION , 1984 .
[16] Joel Spencer. ENUMERATING GRAPHS AND BROWNIAN MOTION , 1997 .
[17] Abraham D. Flaxman,et al. The Lower Tail of the Random Minimum Spanning Tree , 2007, Electron. J. Comb..
[18] Béla Bollobás,et al. Random Graphs: Notation , 2001 .
[19] M. Penrose. Random minimal spanning tree and percolation on the N -cube , 1998 .
[20] N. Read,et al. Minimum spanning trees and random resistor networks in d dimensions. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.
[21] N. Alon,et al. The Probabilistic Method: Alon/Probabilistic , 2008 .
[22] J. Michael Steele,et al. Minimal Spanning Trees for Graphs with Random Edge Lengths , 2002 .
[23] Alan M. Frieze,et al. Random graphs , 2006, SODA '06.
[24] Svante Janson,et al. Random graphs , 2000, Wiley-Interscience series in discrete mathematics and optimization.
[25] Johan Wästlund. An easy proof of the $\zeta(2)$ limit in the random assignment problem , 2009 .
[26] Johan Wästlund. AN EASY PROOF OF THE ζ ( 2 ) LIMIT IN THE RANDOM ASSIGNMENT PROBLEM , 2006 .
[27] Alan M. Frieze,et al. Random Minimum Length Spanning Trees in Regular Graphs , 1998, Comb..
[28] Guy Louchard,et al. Tail estimates for the Brownian excursion area and other Brownian areas , 2007 .
[29] Xinyi Zhang,et al. On the Difference of Expected Lengths of Minimum Spanning Trees , 2009, Combinatorics, Probability and Computing.
[30] Noga Alon,et al. The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.
[31] Svante Janson,et al. Brownian excursion area, Wright’s constants in graph enumeration, and other Brownian areas , 2007, 0704.2289.
[32] Edward M. Wright,et al. The number of connected sparsely edged graphs , 1977, J. Graph Theory.
[33] Béla Bollobás,et al. Random Graphs, Second Edition , 2001, Cambridge Studies in Advanced Mathematics.