Finite-time master-slave synchronization and parameter identification for uncertain Lurie systems.

This paper investigates the finite-time master-slave synchronization and parameter identification problem for uncertain Lurie systems based on the finite-time stability theory and the adaptive control method. The finite-time master-slave synchronization means that the state of a slave system follows with that of a master system in finite time, which is more reasonable than the asymptotical synchronization in applications. The uncertainties include the unknown parameters and noise disturbances. An adaptive controller and update laws which ensures the synchronization and parameter identification to be realized in finite time are constructed. Finally, two numerical examples are given to show the effectiveness of the proposed method.

[1]  Xuyang Lou,et al.  Parameter-dependent robust stability of uncertain neural networks with time-varying delay , 2012, J. Frankl. Inst..

[2]  Shouming Zhong,et al.  Design of PD controller for master-slave synchronization of Lur'e systems with time-delay , 2009, Appl. Math. Comput..

[3]  Chuandong Li,et al.  Robust Exponential Stability of Uncertain Delayed Neural Networks With Stochastic Perturbation and Impulse Effects , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[4]  Hongxing Li,et al.  Finite-time control for nonlinear spacecraft attitude based on terminal sliding mode technique. , 2014, ISA transactions.

[5]  Chun Yin,et al.  Design PD controller for master–slave synchronization of chaotic Lur’e systems with sector and slope restricted nonlinearities ☆ , 2011 .

[6]  Mohammad Pourmahmood Aghababa,et al.  Adaptive Finite-Time Synchronization of Non-Autonomous Chaotic Systems With Uncertainty , 2013 .

[7]  Yuzhen Wang,et al.  Finite-time stability analysis and H∞ control for a class of nonlinear time-delay Hamiltonian systems , 2013, Autom..

[8]  Min Wu,et al.  Asymptotical synchronization for chaotic Lur'e systems using sampled-data control , 2013, Commun. Nonlinear Sci. Numer. Simul..

[9]  Jinde Cao,et al.  Adaptive Stabilization and Synchronization for Chaotic Lur'e Systems With Time-Varying Delay , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[10]  Jinde Cao,et al.  Finite-time stochastic stabilization for BAM neural networks with uncertainties , 2013, J. Frankl. Inst..

[11]  Shihua Chen,et al.  Adaptive synchronization of uncertain hyperchaotic systems based on parameter identification , 2005 .

[12]  Olfa Boubaker,et al.  Chaos synchronization for master slave piecewise linear systems: Application to Chua's circuit , 2012 .

[13]  Mohammad Pourmahmood Aghababa,et al.  Adaptive finite-time stabilization of uncertain non-autonomous chaotic electromechanical gyrostat systems with unknown parameters , 2011 .

[14]  Bin Wang,et al.  Finite-time parameter identification and adaptive synchronization between two chaotic neural networks , 2013, J. Frankl. Inst..

[15]  Sohrab Khanmohammadi,et al.  Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller , 2011 .

[16]  Sangchul Won,et al.  Master-slave synchronization of Lur'e systems with sector and slope restricted nonlinearities , 2009 .

[17]  Qing-Long Han,et al.  Impulsive control of time-delay systems using delayed impulse and its application to impulsive master-slave synchronization , 2008 .

[18]  M. P. Aghababa,et al.  A general nonlinear adaptive control scheme for finite-time synchronization of chaotic systems with uncertain parameters and nonlinear inputs , 2012 .

[19]  Licheng Jiao,et al.  Authors' reply to "Comments on 'Finite-time stability theorem of stochastic nonlinear systems [Automatica 46 (2010) 2105-2108]"' , 2011, Autom..

[20]  Yanjun Shen,et al.  LMI-based finite-time boundedness analysis of neural networks with parametric uncertainties , 2008, Neurocomputing.

[21]  Antonio Loría Master–Slave Synchronization of Fourth-Order Lü Chaotic Oscillators via Linear Output Feedback , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[22]  Leon O. Chua,et al.  Stability analysis of generalized cellular neural networks , 1993, Int. J. Circuit Theory Appl..

[23]  Jinde Cao,et al.  Synchronization Error Estimation and Controller Design for Delayed Lur'e Systems With Parameter Mismatches , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[24]  Jinde Cao,et al.  Finite-time stochastic synchronization of complex networks , 2010 .

[25]  Wu-Hua Chen,et al.  On Sampled-Data Control for Master-Slave Synchronization of Chaotic Lur'e Systems , 2012, IEEE Transactions on Circuits and Systems II: Express Briefs.

[26]  Ping Xiong,et al.  Lr-synchronization and adaptive synchronization of a class of chaotic Lurie systems under perturbations , 2011, J. Frankl. Inst..

[27]  Xin Wang,et al.  Adaptive synchronization and parameter identification of chaotic system with unknown parameters and mixed delays based on a special matrix structure. , 2013, ISA transactions.

[28]  S. Zhong,et al.  Finite-time H∞ control for a class of Markovian jump systems with mode-dependent time-varying delay , 2013, Advances in Difference Equations.

[29]  Johan A. K. Suykens,et al.  Master-Slave Synchronization of Lur'e Systems with Time-Delay , 2001, Int. J. Bifurc. Chaos.

[30]  Wei Zhang,et al.  Finite-time chaos synchronization of unified chaotic system with uncertain parameters , 2009 .

[31]  Yanjun Li,et al.  An improved condition for master-slave synchronization of Lur'e systems , 2007 .

[32]  M. P. Aghababa Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique , 2012 .

[33]  Qing-Long Han,et al.  On Designing Time-Varying Delay Feedback Controllers for Master–Slave Synchronization of Lur'e Systems , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[34]  Shun-ichi Amari,et al.  Stability of asymmetric Hopfield networks , 2001, IEEE Trans. Neural Networks.

[35]  Yang Li,et al.  Improved stability criteria for uncertain delayed neural networks , 2012, Neurocomputing.