Establishing Physical and Chemical Mechanisms of Polymerization and Pyrolysis of Phenolic Resins for Carbon-Carbon Composites

[1]  A. V. van Duin,et al.  Classical and reactive molecular dynamics: Principles and applications in combustion and energy systems , 2023, Progress in Energy and Combustion Science.

[2]  A. V. van Duin,et al.  Modeling and simulations for 2D materials: a ReaxFF perspective , 2023, 2D Materials.

[3]  Yiming Yan,et al.  Reactive force-field MD simulation on the pyrolysis process of phenolic with various cross-linked and branched structures , 2023, Chemical Engineering Science.

[4]  Jacob R. Gissinger,et al.  Predicting char yield of high-temperature resins , 2022, Carbon.

[5]  Z. Lee,et al.  In situ tensile and fracture behavior of monolithic ultra-thin amorphous carbon in TEM , 2022, Carbon.

[6]  M. Sacchi,et al.  Simulating the complete pyrolysis and charring process of phenol–formaldehyde resins using reactive molecular dynamics , 2022, Journal of Materials Science.

[7]  A. V. van Duin,et al.  ReaxFF Force Field Development for Gas-Phase hBN Nanostructure Synthesis. , 2022, The journal of physical chemistry. A.

[8]  P. Scardi,et al.  X-ray powder diffraction in education. Part I. Bragg peak profiles , 2021, Journal of applied crystallography.

[9]  G. Odegard,et al.  Understanding the Origin of the Low Cure Shrinkage of Polybenzoxazine Resin by Computational Simulation , 2021, ACS Applied Polymer Materials.

[10]  G. Odegard,et al.  Reactive Molecular Dynamics Simulation of Epoxy for the Full Cross-Linking Process , 2021, ACS Applied Polymer Materials.

[11]  G. Odegard,et al.  Molecular Dynamics Modeling of Epoxy Resins Using the Reactive Interface Force Field , 2021, Macromolecules.

[12]  F. R. Passador,et al.  Influence of particle size and glassy carbon content on the thermal, mechanical, and electrical properties of PHBV /glassy carbon composites , 2021 .

[13]  A. V. van Duin,et al.  Modeling for Structural Engineering and Synthesis of Two-Dimensional WSe2 Using a Newly Developed ReaxFF Reactive Force Field , 2020 .

[14]  G. Odegard,et al.  Multiscale Modelling of the Cure Process in Thermoset Polymers Using ICME , 2020 .

[15]  B. Cornils phenolic resins , 2020, Catalysis from A to Z.

[16]  A. V. van Duin,et al.  Converting PBO fibers into carbon fibers by ultrafast carbonization , 2020 .

[17]  Micah J. Green,et al.  ReaxFF Simulations of Laser-Induced Graphene (LIG) Formation for Multifunctional Polymer Nanocomposites , 2020 .

[18]  A. Waas,et al.  Integrated Computational Modeling for Efficient Material and Process Design for Composite Aerospace Structures , 2020 .

[19]  A. V. van Duin,et al.  Atomistic Scale Analysis of the Carbonization Process for C/H/O/N-Based Polymers with the ReaxFF Reactive Force Field. , 2019, The journal of physical chemistry. B.

[20]  M. Maiarù,et al.  Microscale Analysis of Virtually Cured Polymer Matrix Composites Accounting for Uncertainty in Matrix Properties During Manufacturing , 2018, American Society for Composites 2018.

[21]  Swati Sharma Glassy Carbon: A Promising Material for Micro- and Nanomanufacturing , 2018, Materials.

[22]  Weiwei Zhang,et al.  Accelerated ReaxFF Simulations for Describing the Reactive Cross-Linking of Polymers. , 2018, The journal of physical chemistry. A.

[23]  A. Izumi,et al.  Molecular Dynamics Simulations of Cross‐Linked Phenolic Resins Using a United‐Atom Model , 2018 .

[24]  Saurabh S. Sawant,et al.  Ablative thermal protection systems: Pyrolysis modeling by scale-bridging molecular dynamics , 2018 .

[25]  A. V. van Duin,et al.  Improvement of the ReaxFF Description for Functionalized Hydrocarbon/Water Weak Interactions in the Condensed Phase. , 2018, The journal of physical chemistry. B.

[26]  G. Odegard,et al.  Comparing the Mechanical Response of Di-, Tri-, and Tetra-functional Resin Epoxies with Reactive Molecular Dynamics. , 2018, Journal of polymer science. Part B, Polymer physics.

[27]  M. Maiarù Effect of uncertainty in matrix fracture properties on the transverse strength of fiber reinforced polymer matrix composites , 2018 .

[28]  A. Izumi,et al.  Structure-mechanical property relationships in crosslinked phenolic resin investigated by molecular dynamics simulation , 2017 .

[29]  A. Szczurek,et al.  Preparation and structural characterisation of model cellular vitreous carbon foams , 2017 .

[30]  A. V. van Duin,et al.  Extension of the ReaxFF Combustion Force Field toward Syngas Combustion and Initial Oxidation Kinetics. , 2017, The journal of physical chemistry. A.

[31]  A. Izumi,et al.  Large-scale molecular dynamics simulation of crosslinked phenolic resins using pseudo-reaction model , 2016 .

[32]  Sudhir B. Kylasa,et al.  The ReaxFF reactive force-field: development, applications and future directions , 2016 .

[33]  Xinli Jing,et al.  Behavior investigation of phenolic hydroxyl groups during the pyrolysis of cured phenolic resin via molecular dynamics simulation , 2016 .

[34]  A. V. Duin,et al.  Development of a ReaxFF Reactive Force Field for Fe/Cr/O/S and Application to Oxidation of Butane over a Pyrite-Covered Cr2O3 Catalyst , 2015 .

[35]  C. Bauschlicher,et al.  Molecular dynamics simulations of phenolic resin: Construction of atomistic models , 2015 .

[36]  G. Odegard,et al.  Predicting mechanical response of crosslinked epoxy using ReaxFF , 2014 .

[37]  E. Reed,et al.  Comparison of ReaxFF, DFTB, and DFT for phenolic pyrolysis. 1. Molecular dynamics simulations. , 2013, The journal of physical chemistry. A.

[38]  E. Reed,et al.  Comparison of ReaxFF, DFTB, and DFT for phenolic pyrolysis. 2. Elementary reaction paths. , 2013, The journal of physical chemistry. A.

[39]  Laurent Capolungo,et al.  Virtual diffraction analysis of Ni [0 1 0] symmetric tilt grain boundaries , 2013 .

[40]  Kazuhisa Hirano,et al.  Phenolic resins—100 years of progress and their future , 2013 .

[41]  R. Ruoff,et al.  Mechanical measurements of ultra-thin amorphous carbon membranes using scanning atomic force microscopy , 2012 .

[42]  A. Izumi,et al.  Atomistic molecular dynamics study of cross-linked phenolic resins , 2012 .

[43]  Ananth Grama,et al.  Parallel reactive molecular dynamics: Numerical methods and algorithmic techniques , 2012, Parallel Comput..

[44]  A. V. van Duin,et al.  Simulating the initial stage of phenolic resin carbonization via the ReaxFF reactive force field. , 2009, The journal of physical chemistry. A.

[45]  A. V. van Duin,et al.  ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. , 2008, The journal of physical chemistry. A.

[46]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[47]  J. Sheehan,et al.  Carbon-Carbon Composites , 1994 .

[48]  Thorpe,et al.  Elastic properties of glasses. , 1985, Physical review letters.

[49]  A. Fialkov,et al.  Vitreous Carbon (Preparation, Properties, and Applications) , 1971 .

[50]  M. Inagaki,et al.  Glass-like carbons , 1969 .

[51]  J. C. Lewis,et al.  Vitreous carbon — A new form of carbon , 1967 .

[52]  C. Shu,et al.  Reactive force field (ReaxFF) molecular dynamics investigation of bituminous coal combustion under oxygen-deficient conditions , 2022, Fuel.

[53]  M. A. González,et al.  Force fields and molecular dynamics simulations , 2011 .

[54]  A. Stukowski Modelling and Simulation in Materials Science and Engineering Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool , 2009 .