A robust inner-outer HSS preconditioner

SUMMARY This paper presents an inner-outer preconditioner for symmetric positive deflnite matrices based on hierarchically semiseparable (HSS) matrix representation. A sequence of new HSS algorithms are developed, including some ULV-type HSS methods and triangular HSS methods. During the construction of this preconditioner, ofi-diagonal blocks are compressed in parallel, and an approximate HSS form is used as the outer HSS representation. In the meantime, the internal dense diagonal blocks are approximately factorized into HSS Cholesky factors. Such inner factorizations are guaranteed to exist for any approximation accuracy. The inner-outer preconditioner combines the advantages of both direct HSS and triangular HSS methods, and are both scalable and robust. Systematic complexity analysis and discussions of the errors are presented. Various tests on some practical numerical problems are used to demonstrate the e‐ciency and robustness. In particular, the efiectiveness of the preconditioner in iterative solutions has been shown for some illconditioned problems. This work also gives a practical way of developing inner-outer preconditioners using direct rank structured factorizations (other than iterative methods). Copyright c ∞ 2011 John Wiley & Sons, Ltd.

[1]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[2]  Michele Benzi,et al.  Robust Approximate Inverse Preconditioning for the Conjugate Gradient Method , 2000, SIAM J. Sci. Comput..

[3]  Jianlin Xia,et al.  Superfast Multifrontal Method for Large Structured Linear Systems of Equations , 2009, SIAM J. Matrix Anal. Appl..

[4]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[5]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[6]  Steffen Börm,et al.  Data-sparse Approximation by Adaptive ℋ2-Matrices , 2002, Computing.

[7]  V. Rokhlin Rapid solution of integral equations of classical potential theory , 1985 .

[8]  Jianlin Xia,et al.  Robust Approximate Cholesky Factorization of Rank-Structured Symmetric Positive Definite Matrices , 2010, SIAM J. Matrix Anal. Appl..

[9]  T. Manteuffel An incomplete factorization technique for positive definite linear systems , 1980 .

[10]  Igor E. Kaporin,et al.  High quality preconditioning of a general symmetric positive definite matrix based on its UTU + UTR + RTU-decomposition , 1998, Numer. Linear Algebra Appl..

[11]  Mario Bebendorf,et al.  Stabilized rounded addition of hierarchical matrices , 2007, Numer. Linear Algebra Appl..

[12]  Xiaoye S. Li,et al.  Direction-Preserving and Schur-Monotonic Semiseparable Approximations of Symmetric Positive Definite Matrices , 2009, SIAM J. Matrix Anal. Appl..

[13]  Fang Chen,et al.  Modified HSS iteration methods for a class of complex symmetric linear systems , 2010, Computing.

[14]  Shivkumar Chandrasekaran,et al.  A Fast ULV Decomposition Solver for Hierarchically Semiseparable Representations , 2006, SIAM J. Matrix Anal. Appl..

[15]  Jianlin Xia,et al.  Efficient scalable algorithms for hierarchically semiseparable matrices , 2011 .

[16]  John P. Boyd,et al.  Numerical experiments on the condition number of the interpolation matrices for radial basis functions , 2011 .

[17]  Sabine Le Borne,et al.  Numerische Mathematik Domain decomposition based H-LU preconditioning , 2009 .

[18]  Gene H. Golub,et al.  Inexact Preconditioned Conjugate Gradient Method with Inner-Outer Iteration , 1999, SIAM J. Sci. Comput..

[19]  Gene H. Golub,et al.  Matrix computations , 1983 .

[20]  Jianlin Xia,et al.  Fast algorithms for hierarchically semiseparable matrices , 2010, Numer. Linear Algebra Appl..

[21]  Israel Koltracht,et al.  Linear complexity algorithm for semiseparable matrices , 1985 .

[22]  J. Meijerink,et al.  An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .

[23]  Per-Gunnar Martinsson,et al.  A Fast Randomized Algorithm for Computing a Hierarchically Semiseparable Representation of a Matrix , 2011, SIAM J. Matrix Anal. Appl..

[24]  S. Chandrasekaran,et al.  Algorithms to solve hierarchically semi-separable systems , 2007 .

[25]  Ronald Kriemann,et al.  Parallel black box $$\mathcal {H}$$-LU preconditioning for elliptic boundary value problems , 2008 .

[26]  Thomas Kailath,et al.  Linear complexity algorithms for semiseparable matrices , 1985 .

[27]  Héctor D. Ceniceros,et al.  Fast algorithms with applications to pdes , 2005 .

[28]  S. Chandrasekaran,et al.  A fast adaptive solver for hierarchically semiseparable representations , 2005 .

[29]  Wolfgang Hackbusch,et al.  A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.

[30]  Shivkumar Chandrasekaran,et al.  A Fast Solver for HSS Representations via Sparse Matrices , 2006, SIAM J. Matrix Anal. Appl..

[31]  Boris N. Khoromskij,et al.  A Sparse H-Matrix Arithmetic. Part II: Application to Multi-Dimensional Problems , 2000, Computing.

[32]  Patrick Dewilde,et al.  Iterative solution methods based on the Hierarchically Semi-Separable Representation , 2006 .

[33]  Lexing Ying,et al.  Fast construction of hierarchical matrix representation from matrix-vector multiplication , 2009, J. Comput. Phys..

[34]  L. Grasedyck,et al.  Domain decomposition based $${\mathcal H}$$ -LU preconditioning , 2009, Numerische Mathematik.