A robust inner-outer HSS preconditioner
暂无分享,去创建一个
[1] Yousef Saad,et al. A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..
[2] Michele Benzi,et al. Robust Approximate Inverse Preconditioning for the Conjugate Gradient Method , 2000, SIAM J. Sci. Comput..
[3] Jianlin Xia,et al. Superfast Multifrontal Method for Large Structured Linear Systems of Equations , 2009, SIAM J. Matrix Anal. Appl..
[4] James Demmel,et al. Applied Numerical Linear Algebra , 1997 .
[5] Leslie Greengard,et al. A fast algorithm for particle simulations , 1987 .
[6] Steffen Börm,et al. Data-sparse Approximation by Adaptive ℋ2-Matrices , 2002, Computing.
[7] V. Rokhlin. Rapid solution of integral equations of classical potential theory , 1985 .
[8] Jianlin Xia,et al. Robust Approximate Cholesky Factorization of Rank-Structured Symmetric Positive Definite Matrices , 2010, SIAM J. Matrix Anal. Appl..
[9] T. Manteuffel. An incomplete factorization technique for positive definite linear systems , 1980 .
[10] Igor E. Kaporin,et al. High quality preconditioning of a general symmetric positive definite matrix based on its UTU + UTR + RTU-decomposition , 1998, Numer. Linear Algebra Appl..
[11] Mario Bebendorf,et al. Stabilized rounded addition of hierarchical matrices , 2007, Numer. Linear Algebra Appl..
[12] Xiaoye S. Li,et al. Direction-Preserving and Schur-Monotonic Semiseparable Approximations of Symmetric Positive Definite Matrices , 2009, SIAM J. Matrix Anal. Appl..
[13] Fang Chen,et al. Modified HSS iteration methods for a class of complex symmetric linear systems , 2010, Computing.
[14] Shivkumar Chandrasekaran,et al. A Fast ULV Decomposition Solver for Hierarchically Semiseparable Representations , 2006, SIAM J. Matrix Anal. Appl..
[15] Jianlin Xia,et al. Efficient scalable algorithms for hierarchically semiseparable matrices , 2011 .
[16] John P. Boyd,et al. Numerical experiments on the condition number of the interpolation matrices for radial basis functions , 2011 .
[17] Sabine Le Borne,et al. Numerische Mathematik Domain decomposition based H-LU preconditioning , 2009 .
[18] Gene H. Golub,et al. Inexact Preconditioned Conjugate Gradient Method with Inner-Outer Iteration , 1999, SIAM J. Sci. Comput..
[19] Gene H. Golub,et al. Matrix computations , 1983 .
[20] Jianlin Xia,et al. Fast algorithms for hierarchically semiseparable matrices , 2010, Numer. Linear Algebra Appl..
[21] Israel Koltracht,et al. Linear complexity algorithm for semiseparable matrices , 1985 .
[22] J. Meijerink,et al. An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .
[23] Per-Gunnar Martinsson,et al. A Fast Randomized Algorithm for Computing a Hierarchically Semiseparable Representation of a Matrix , 2011, SIAM J. Matrix Anal. Appl..
[24] S. Chandrasekaran,et al. Algorithms to solve hierarchically semi-separable systems , 2007 .
[25] Ronald Kriemann,et al. Parallel black box $$\mathcal {H}$$-LU preconditioning for elliptic boundary value problems , 2008 .
[26] Thomas Kailath,et al. Linear complexity algorithms for semiseparable matrices , 1985 .
[27] Héctor D. Ceniceros,et al. Fast algorithms with applications to pdes , 2005 .
[28] S. Chandrasekaran,et al. A fast adaptive solver for hierarchically semiseparable representations , 2005 .
[29] Wolfgang Hackbusch,et al. A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.
[30] Shivkumar Chandrasekaran,et al. A Fast Solver for HSS Representations via Sparse Matrices , 2006, SIAM J. Matrix Anal. Appl..
[31] Boris N. Khoromskij,et al. A Sparse H-Matrix Arithmetic. Part II: Application to Multi-Dimensional Problems , 2000, Computing.
[32] Patrick Dewilde,et al. Iterative solution methods based on the Hierarchically Semi-Separable Representation , 2006 .
[33] Lexing Ying,et al. Fast construction of hierarchical matrix representation from matrix-vector multiplication , 2009, J. Comput. Phys..
[34] L. Grasedyck,et al. Domain decomposition based $${\mathcal H}$$ -LU preconditioning , 2009, Numerische Mathematik.