A universal cooperative assembly-directed method for coating of mesoporous TiO2 nanoshells with enhanced lithium storage properties

A universal cooperative assembly method is developed for growing mesostructured TiO2 shells on diverse functional particles. TiO2 is exceptionally useful, but it remains a great challenge to develop a universal method to coat TiO2 nanoshells on different functional materials. We report a one-pot, low-temperature, and facile method that can rapidly form mesoporous TiO2 shells on various inorganic, organic, and inorganic-organic composite materials, including silica-based, metal, metal oxide, organic polymer, carbon-based, and metal-organic framework nanomaterials via a cooperative assembly-directed strategy. In constructing hollow, core-shell, and yolk-shell geometries, both amorphous and crystalline TiO2 nanoshells are demonstrated with excellent control. When used as electrode materials for lithium ion batteries, these crystalline TiO2 nanoshells composed of very small nanocrystals exhibit remarkably long-term cycling stability over 1000 cycles. The electrochemical properties demonstrate that these TiO2 nanoshells are promising anode materials.

[1]  X. Lou,et al.  Hierarchical tubular structures constructed from ultrathin TiO2(B) nanosheets for highly reversible lithium storage , 2015 .

[2]  X. Lou,et al.  Rutile TiO2 submicroboxes with superior lithium storage properties. , 2015, Angewandte Chemie.

[3]  X. Lou,et al.  TiO2 hollow spheres composed of highly crystalline nanocrystals exhibit superior lithium storage properties. , 2014, Angewandte Chemie.

[4]  Huijun Zhao,et al.  Multishelled TiO2 hollow microspheres as anodes with superior reversible capacity for lithium ion batteries. , 2014, Nano letters.

[5]  Xiaoming Li,et al.  Anisotropic growth-induced synthesis of dual-compartment Janus mesoporous silica nanoparticles for bimodal triggered drugs delivery. , 2014, Journal of the American Chemical Society.

[6]  Wei Li,et al.  Sol-gel design strategy for ultradispersed TiO2 nanoparticles on graphene for high-performance lithium ion batteries. , 2013, Journal of the American Chemical Society.

[7]  Wei Zhang,et al.  A Facile Method to Improve the Photocatalytic and Lithium‐Ion Rechargeable Battery Performance of TiO2 Nanocrystals , 2013 .

[8]  Dehong Chen,et al.  Surface-metastable phase-initiated seeding and ostwald ripening: a facile fluorine-free process towards spherical fluffy core/shell, yolk/shell, and hollow anatase nanostructures. , 2013, Angewandte Chemie.

[9]  Ilkeun Lee,et al.  Controllable Synthesis of Mesoporous TiO2 Hollow Shells: Toward an Efficient Photocatalyst , 2013 .

[10]  F. Zaera,et al.  Tailored synthesis of mesoporous TiO2 hollow nanostructures for catalytic applications , 2013 .

[11]  C. F. Ng,et al.  Rationally Designed Hierarchical TiO2@Fe2O3 Hollow Nanostructures for Improved Lithium Ion Storage , 2013 .

[12]  Q. Huo,et al.  A versatile cooperative template-directed coating method to construct uniform microporous carbon shells for multifunctional core-shell nanocomposites. , 2013, Nanoscale.

[13]  Z. Tang,et al.  Photocatalytic properties of graphdiyne and graphene modified TiO₂: from theory to experiment. , 2013, ACS nano.

[14]  H. Zeng,et al.  Targeted synthesis of silicomolybdic acid (Keggin acid) inside mesoporous silica hollow spheres for Friedel-Crafts alkylation. , 2012, Journal of the American Chemical Society.

[15]  X. Lou,et al.  TiO2 Nanocages: Fast Synthesis, Interior Functionalization and Improved Lithium Storage Properties , 2012, Advanced materials.

[16]  Wei Li,et al.  A versatile kinetics-controlled coating method to construct uniform porous TiO2 shells for multifunctional core-shell structures. , 2012, Journal of the American Chemical Society.

[17]  Ayusman Sen,et al.  Controlled synthesis of heterogeneous metal-titania nanostructures and their applications. , 2012, Journal of the American Chemical Society.

[18]  Yongyao Xia,et al.  Ti-based compounds as anode materials for Li-ion batteries , 2012 .

[19]  Zhiyu Wang,et al.  Metal Oxide Hollow Nanostructures for Lithium‐ion Batteries , 2012, Advanced materials.

[20]  Ilkeun Lee,et al.  Control of the nanoscale crystallinity in mesoporous TiO2 shells for enhanced photocatalytic activity , 2012 .

[21]  A. J. Frank,et al.  Rapid charge transport in dye-sensitized solar cells made from vertically aligned single-crystal rutile TiO(2) nanowires. , 2012, Angewandte Chemie.

[22]  Dan Wang,et al.  Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems , 2012 .

[23]  Ilkeun Lee,et al.  Mesoporous Anatase Titania Hollow Nanostructures though Silica‐Protected Calcination , 2012 .

[24]  C. Detavernier,et al.  Tailoring Nanoporous Materials by Atomic Layer Deposition , 2012 .

[25]  Ilkeun Lee,et al.  A yolk@shell nanoarchitecture for Au/TiO2 catalysts. , 2011, Angewandte Chemie.

[26]  D. Zhao,et al.  Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. , 2011, Angewandte Chemie.

[27]  Jin Zhai,et al.  Hierarchically ordered macro-mesoporous TiO₂-graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities. , 2011, ACS nano.

[28]  Ho Won Jang,et al.  Highly sensitive CO sensors based on cross-linked TiO2 hollow hemispheres , 2010 .

[29]  Mietek Jaroniec,et al.  Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed {001} facets. , 2010, Journal of the American Chemical Society.

[30]  Fuzhi Huang,et al.  Synthesis of monodisperse mesoporous titania beads with controllable diameter, high surface areas, and variable pore diameters (14-23 nm). , 2010, Journal of the American Chemical Society.

[31]  Valentina Cauda,et al.  Multiple core-shell functionalized colloidal mesoporous silica nanoparticles. , 2009, Journal of the American Chemical Society.

[32]  Chung-Yuan Mou,et al.  Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. , 2009, Small.

[33]  Taeghwan Hyeon,et al.  Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. , 2008, Angewandte Chemie.

[34]  L. Archer,et al.  A General Route to Nonspherical Anatase TiO2 Hollow Colloids and Magnetic Multifunctional Particles , 2008 .

[35]  D. Zhao,et al.  Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. , 2008, Journal of the American Chemical Society.

[36]  D. Zhao,et al.  Controllable and repeatable synthesis of thermally stable anatase nanocrystal-silica composites with highly ordered hexagonal mesostructures. , 2007, Journal of the American Chemical Society.

[37]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[38]  M. Comotti,et al.  High-temperature-stable catalysts by hollow sphere encapsulation. , 2006, Angewandte Chemie.

[39]  T. Kanda,et al.  Preparation of highly dispersed core/shell-type titania nanocapsules containing a single Ag nanoparticle. , 2006, Journal of the American Chemical Society.

[40]  Yadong Li,et al.  Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. , 2004, Angewandte Chemie.

[41]  Christina Graf,et al.  A General Method To Coat Colloidal Particles with Silica , 2003 .

[42]  A. Pierre,et al.  Chemistry of aerogels and their applications. , 2002, Chemical reviews.

[43]  Younan Xia,et al.  Silver Nanowires Can Be Directly Coated with Amorphous Silica To Generate Well-Controlled Coaxial Nanocables of Silver/Silica , 2002 .

[44]  F. Caruso,et al.  Hollow Titania Spheres from Layered Precursor Deposition on Sacrificial Colloidal Core Particles , 2001 .

[45]  Younan Xia,et al.  Preparation and Characterization of Micrometer-Sized “Egg Shells” , 2001 .

[46]  Josef Salbeck,et al.  Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies , 1998, Nature.

[47]  Bradley F. Chmelka,et al.  Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures , 1998 .

[48]  Fredrickson,et al.  Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores , 1998, Science.

[49]  M. Khan,et al.  Formation mechanism of monodisperse peanut-type α-Fe2O3 particles from condensed ferric hydroxide gel , 1993 .

[50]  C. Brinker,et al.  Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing , 1990 .

[51]  W. S. Hummers,et al.  Preparation of Graphitic Oxide , 1958 .

[52]  Hongyang Liu,et al.  Crystallinity control of TiO2 hollow shells through resin-protected calcination for enhanced photocatalytic activity , 2015 .

[53]  Yayuan Liu,et al.  Synthesis and self-assembly of monodispersed metal-organic framework microcrystals. , 2013, Chemistry, an Asian journal.

[54]  A. F. Demirörs,et al.  A general method to coat colloidal particles with titania. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[55]  Ivan Gorelikov,et al.  Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles. , 2008, Nano letters.