State-of-the-knowledge on TWIP steel

Abstract High Mn twinning induced plasticity (TWIP) steel is a new type of structural steel, characterised by both high strength and superior formability. TWIP steel offers an extraordinary opportunity to adjust the mechanical properties of steel by modifying the strain hardening. The use of TWIP steel may therefore lead to a considerable lightweighting of steel components, a reduction of material use and an improved press forming behaviour. These key advantages will help implement current automotive vehicle design trends which emphasise a reduction of greenhouse gas emissions and lowering of fuel consumption. In addition, high strength TWIP steel will effectively contribute to weight containment in vehicles equipped with hybrid and electric motors, as these are considerably heavier than conventional motors. The present review addresses all aspects of the physical metallurgy of the high strength TWIP steel with a special emphasis on the properties and key advantages of TWIP sheet steel products relevant to automotive applications.

[1]  J. Cheyne Kor! , 1983 .

[2]  D. Raabe,et al.  The effect of grain size and grain orientation on deformation twinning in a Fe-22 wt.% Mn-0.6 wt.% C TWIP steel , 2010 .

[3]  Hannu Hänninen,et al.  Formation of Shear Bands and Strain-induced Martensite During Plastic Deformation of Metastable Austenitic Stainless Steels , 2007 .

[4]  O. Bouaziz,et al.  Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe–Mn–C steel , 2008 .

[5]  M. Cherkaoui,et al.  Modelling the behaviour of polycrystalline austenitic steel with twinning-induced plasticity effect , 2009 .

[6]  G. Chin,et al.  Formation of deformation twins in f.c.c. crystals , 1973 .

[7]  Yansheng Zhang,et al.  Effect of Si content on the stacking fault energy in γ-Fe–Mn–Si–C alloys: Part I. X-ray diffraction line profile analysis , 2009 .

[8]  Olivier Bouaziz,et al.  Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloys , 2004 .

[9]  K. Harada,et al.  Strain Rate Sensitivity of 31Mn-3Al-3Si TWIP Steel with Partially Recrystallized Fine Grained Structure , 2008 .

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  Seok-Jae Lee,et al.  Effect of Al on the stacking fault energy of Fe–18Mn–0.6C twinning-induced plasticity , 2011 .

[12]  E. .. Mittemeijer,et al.  Reevaluation of the Fe-Mn phase diagram , 2004 .

[13]  J. Venables The nucleation and propagation of deformation twins , 1964 .

[14]  D. Schryvers,et al.  Is there a relationship between the stacking fault character and the activated mode of plasticity of Fe-Mn-based austenitic steels ? , 2009 .

[15]  J. Bogdanoff,et al.  On the Theory of Dislocations , 1950 .

[16]  T. W. Kim,et al.  Properties of austenitic Fe-25Mn-1Al-0.3C alloy for automotive structural applications , 1993 .

[17]  H. Riedel,et al.  Twinning Models in Self‐Consistent Texture Simulations of TWIP Steels , 2008 .

[18]  O. Bouaziz,et al.  Effect of chemical composition on work hardening of Fe—Mn—C TWIP steels , 2011 .

[19]  R. Dronskowski,et al.  Carbon‐Induced Ordering in Manganese‐Rich Austenite — A Density‐Functional Total‐Energy and Chemical‐Bonding Study , 2011 .

[20]  J. Hirth,et al.  Theory of Dislocations (2nd ed.) , 1983 .

[21]  U. Prahl,et al.  Derivation and Variation in Composition-Dependent Stacking Fault Energy Maps Based on Subregular Solution Model in High-Manganese Steels , 2009 .

[22]  O. Graessel,et al.  High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development — properties — application , 2000 .

[23]  A. Pineau,et al.  Twinning and strain-induced F.C.C. → H.C.P. transformation in the FeMnCrC system , 1977 .

[24]  J. Venables Deformation twinning in face-centred cubic metals , 1961 .

[25]  Young‐kook Lee,et al.  Strain hardening behavior of a Fe―18Mn―0.6C―1.5Al TWIP steel , 2009 .

[26]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[27]  H. Fujii,et al.  Effect of Grain Size on Tensile Properties of TWIP Steel , 2007 .

[28]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[29]  Jong-Ku Jung,et al.  Hydrogen Embrittlement Behavior of High Mn TRIP/TWIP Steels , 2008 .

[30]  J. Venables On dislocation pole models for twinning , 1974 .

[31]  Peter Neumann,et al.  Supra-Ductile and High-Strength Manganese-TRIP/TWIP Steels for High Energy Absorption Purposes , 2003 .

[32]  V. Kuokkala,et al.  Stability of austenite and quasi-adiabatic heating during high-strain-rate deformation of twinning-induced plasticity steels , 2010 .

[33]  Marc A. Meyers,et al.  THE ONSET OF TWINNING IN METALS: A CONSTITUTIVE DESCRIPTION , 2001 .

[34]  D. Perovic,et al.  Effect of nitrogen on stacking fault energy of f.c.c. iron-based alloys , 1999 .

[35]  O. Bouaziz,et al.  Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels , 2008 .

[36]  P. Zavattieri,et al.  Spatio-temporal characteristics of the Portevin-Le Châtelier effect in austenitic steel with twinning induced plasticity , 2009 .

[37]  Woo-sik Kim,et al.  Effect of aluminium on deformation mode and mechanical properties of austenitic FeMnCrAlC alloys , 1995 .

[38]  Y. Estrin,et al.  Local strain hardening and nonuniformity of plastic deformation , 1986 .

[39]  B. C. De Cooman,et al.  Stretch‐Flangeability of High Mn TWIP steel , 2010 .

[40]  B. D. Cooman,et al.  On the Stacking Fault Energy of Fe-18 Pct Mn-0.6 Pct C-1.5 Pct Al Twinning-Induced Plasticity Steel , 2011 .

[41]  L. Hector,et al.  A predictive mechanism for dynamic strain ageing in aluminium–magnesium alloys , 2006, Nature materials.

[42]  Lei Chen,et al.  Localized Deformation due to Portevin-LeChatelier Effect in 18Mn-0.6C TWIP Austenitic Steel , 2007 .

[43]  J. G. Sevillano An alternative model for the strain hardening of FCC alloys that twin, validated for twinning-induced plasticity steel , 2009 .

[44]  W. Marsden I and J , 2012 .

[45]  O. Bouaziz,et al.  Nanostructured steel with high work-hardening by the exploitation of the thermal stability of mechanically induced twins , 2009 .

[46]  K. Harada,et al.  High Speed Deformation of Ultrafine Grained TWIP Steel , 2007 .

[47]  H. Maier,et al.  The role of monotonic pre-deformation on the fatigue performance of a high-manganese austenitic TWIP steel , 2009 .

[48]  T. Byun On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels , 2003 .

[49]  L. Kestens,et al.  Microstructure and texture evolution during cold rolling and annealing of a high Mn TWIP steel , 2009 .

[50]  Seok-Jae Lee,et al.  Effect of nitrogen on the critical strain for dynamic strain aging in high-manganese twinning-induced plasticity steel , 2011 .

[51]  O. Bouaziz,et al.  Modelling of TWIP effect on work-hardening , 2001 .

[52]  Young‐kook Lee,et al.  Hydrogen Delayed Fracture Properties and Internal Hydrogen Behavior of a Fe-18Mn-1.5Al-0.6C TWIP Steel , 2009 .

[53]  A. Najafizadeh,et al.  Flow stress analysis of TWIP steel via the XRD measurement of dislocation density , 2010 .

[54]  J. Grilhé,et al.  Relationship between extrinsic stacking faults and mechanical twinning in F.C.C. solid solutions with low stacking fault energy , 1984 .

[55]  H. Maier,et al.  Deformation of single crystal hadfield steel by twinning and slip , 2000 .

[56]  B C De Cooman,et al.  State-of-the-knowledge on TWIP steel , 2012 .

[57]  A. Heuer,et al.  Nucleation and growth of deformation twins: A perspective based on the double-cross-slip mechanism of deformation twinning , 2002 .

[58]  Olivier Bouaziz,et al.  Modeling of mechanical twinning in a high manganese content austenitic steel , 2004 .

[59]  X. D. Wang,et al.  On the deformation mechanism of twinning-induced plasticity steel , 2008 .

[60]  X. D. Wang,et al.  Effect of Nitrogen on Stacking Fault Formation Probability and Mechanical Properties of Twinning-Induced Plasticity Steels , 2008 .

[61]  O. Bouaziz,et al.  A physical model of the twinning-induced plasticity effect in a high manganese austenitic steel , 2004 .

[62]  L. P. Karjalainen,et al.  Fatigue behavior of high-Mn TWIP steels , 2009 .

[63]  Yansheng Zhang,et al.  Effect of Al content on stacking fault energy in austenitic Fe–Mn–Al–C alloys , 2008, Journal of Materials Science.