Poly(glycerol sebacate urethane)-cellulose nanocomposites with water-active shape-memory effects.

Biodegradable and biocompatible materials with shape-memory effects (SMEs) are attractive for use as minimally invasive medical devices. Nanocomposites with SMEs were prepared from biodegradable poly(glycerol sebacate urethane) (PGSU) and renewable cellulose nanocrystals (CNCs). The effects of CNC content on the structure, water absorption, and mechanical properties of the PGSU were studied. The water-responsive mechanically adaptive properties and shape-memory performance of PGSU-CNC nanocomposites were observed, which are dependent on the content of CNCs. The PGSU-CNC nanocomposite containing 23.2 vol % CNCs exhibited the best SMEs among the nanocomposites investigated, with the stable shape fixing and shape recovery ratios being 98 and 99%, respectively, attributable to the formation of a hydrophilic, yet strong, CNC network in the elastomeric matrix. In vitro degradation profiles of the nanocomposites were assessed with and without the presence of an enzyme.

[1]  Z. Rzayev,et al.  Synthesis and characterization of poly(glycerol‐co‐sebacate‐co‐ε‐caprolactone) elastomers , 2016, Journal of tissue engineering and regenerative medicine.

[2]  K. O’Kelly,et al.  Poly(vinyl alcohol) particle-reinforced elastomer composites with water-active shape-memory effects , 2014 .

[3]  K. O’Kelly,et al.  Poly(methacrylic acid)‐grafted clay–thermoplastic elastomer composites with water‐induced shape‐memory effects , 2013 .

[4]  A. Nogales,et al.  Chain Arrangement and Glass Transition Temperature Variations in Polymer Nanoparticles under 3D-Confinement , 2013 .

[5]  H. Meng,et al.  A review of stimuli-responsive shape memory polymer composites , 2013 .

[6]  A. Hollander,et al.  Directing chondrogenesis of stem cells with specific blends of cellulose and silk. , 2013, Biomacromolecules.

[7]  Chengjun Zhou,et al.  Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. , 2013, ACS applied materials & interfaces.

[8]  P. D. del Nido,et al.  A Highly Tunable Biocompatible and Multifunctional Biodegradable Elastomer , 2013, Advanced materials.

[9]  A. Boccaccini,et al.  Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): A review , 2012 .

[10]  Yong Zhu,et al.  Achieving shape memory: Reversible behaviors of cellulose–PU blends in wet–dry cycles , 2012 .

[11]  S. Zhang,et al.  pH-induced shape-memory polymers. , 2012, Macromolecular rapid communications.

[12]  K. Oksman,et al.  Characterization of cellulose nanowhiskers: A comparison of two industrial bio-residues , 2012 .

[13]  Jinlian Hu,et al.  Rapidly switchable water-sensitive shape-memory cellulose/elastomer nano-composites , 2012 .

[14]  Yanju Liu,et al.  Shape-memory polymers and their composites: Stimulus methods and applications , 2011 .

[15]  Christine Jérôme,et al.  Thermoreversibly crosslinked poly(ε-caprolactone) as recyclable shape-memory polymer network. , 2011, Macromolecular rapid communications.

[16]  Stuart J. Rowan,et al.  Bioinspired Mechanically Adaptive Polymer Nanocomposites with Water-Activated Shape-Memory Effect , 2011 .

[17]  Zakaria Man,et al.  Preparation of Cellulose Nanocrystals Using an Ionic Liquid , 2011 .

[18]  F. Migliavacca,et al.  Biomedical Applications of Shape Memory Alloys , 2011 .

[19]  Xiangying Sun,et al.  Synthesis, properties, and light-induced shape memory effect of multiblock polyesterurethanes containing biodegradable segments and pendant cinnamamide groups. , 2011, Biomacromolecules.

[20]  S. Reuveny,et al.  Expansion of human embryonic stem cells on cellulose microcarriers. , 2010, Current protocols in stem cell biology.

[21]  R. Kasi,et al.  Shape Memory Behavior of Side-Chain Liquid Crystalline Polymer Networks Triggered by Dual Transition Temperatures , 2010 .

[22]  K. Clarke,et al.  Magnetic resonance imaging evaluation of remodeling by cardiac elastomeric tissue scaffold biomaterials in a rat model of myocardial infarction. , 2010, Tissue engineering. Part A.

[23]  Wei Min Huang,et al.  Thermo-moisture responsive polyurethane shape-memory polymer and composites: a review , 2010 .

[24]  Ingrid A. Rousseau,et al.  Shape memory epoxy: Composition, structure, properties and shape memory performances , 2010 .

[25]  Lay Poh Tan,et al.  Control of in vitro neural differentiation of mesenchymal stem cells in 3D macroporous, cellulosic hydrogels. , 2010, Regenerative medicine.

[26]  Sabu Thomas,et al.  Preparation of Bionanomaterials and their Polymer Nanocomposites from Waste and Biomass , 2010 .

[27]  J. Labidi,et al.  Combined organosolv and ultrafiltration lignocellulosic biorefinery process , 2010 .

[28]  E. J. Chung,et al.  Advances and Applications of Biodegradable Elastomers in Regenerative Medicine , 2010 .

[29]  John G. Tsavalas,et al.  Hydroplasticization of polymers: model predictions and application to emulsion polymers. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[30]  T. Ware,et al.  High‐Strain Shape‐Memory Polymers , 2010 .

[31]  R. T. Tran,et al.  Citric-Acid-Derived Photo-Cross-Linked Biodegradable Elastomers , 2010, Journal of biomaterials science. Polymer edition.

[32]  W. Thielemans,et al.  Synthesis of polycaprolactone: a review. , 2009, Chemical Society reviews.

[33]  A. Carlmark,et al.  ARGET ATRP for versatile grafting of cellulose using various monomers. , 2009, ACS applied materials & interfaces.

[34]  J. Tritt-Goc,et al.  Glass transition temperature and thermal decomposition of cellulose powder , 2008 .

[35]  Jinsong Leng,et al.  Shape‐Memory Polymer in Response to Solution , 2008 .

[36]  Wei Cai,et al.  Shape-memory effect of poly (glycerol–sebacate) elastomer , 2008 .

[37]  D. Tyler,et al.  Stimuli-Responsive Polymer Nanocomposites Inspired by the Sea Cucumber Dermis , 2008, Science.

[38]  Dan Aoki,et al.  SH-containing cellulose acetate derivatives: preparation and characterization as a shape memory-recovery material. , 2007, Biomacromolecules.

[39]  J. Karp,et al.  Synthesis and characterization of photocurable elastomers from poly(glycerol-co-sebacate). , 2007, Biomacromolecules.

[40]  Jinlian Hu,et al.  Morphology and shape memory effect of segmented polyurethanes. Part І: With crystalline reversible phase , 2007 .

[41]  Yen Chang,et al.  Rapidly self-expandable polymeric stents with a shape-memory property. , 2007, Biomacromolecules.

[42]  L. Yahia,et al.  Medical applications of shape memory polymers , 2007, Biomedical materials.

[43]  J. Dealy,et al.  Effects of Pressure and Supercritical Fluids on the Viscosity of Polyethylene , 2006 .

[44]  Jin Gao,et al.  Macroporous elastomeric scaffolds with extensive micropores for soft tissue engineering. , 2006, Tissue engineering.

[45]  Kristiina Oksman,et al.  Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis , 2006 .

[46]  Wei Min Huang,et al.  Qualitative separation of the effects of carbon nano-powder and moisture on the glass transition temperature of polyurethane shape memory polymer , 2005 .

[47]  R. Langer,et al.  Light-induced shape-memory polymers , 2005, Nature.

[48]  Wei Min Huang,et al.  Water-driven programmable polyurethane shape memory polymer: Demonstration and mechanism , 2005 .

[49]  S. Eichhorn,et al.  Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. , 2005, Biomacromolecules.

[50]  M. Roman,et al.  Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. , 2005, Biomacromolecules.

[51]  Philippe Dumas,et al.  FTIR study of polycaprolactone chain organization at interfaces. , 2004, Journal of colloid and interface science.

[52]  R. Langer,et al.  Designing materials for biology and medicine , 2004, Nature.

[53]  A. Dufresne,et al.  Preparation of Cellulose Whiskers Reinforced Nanocomposites from an Organic Medium Suspension , 2004 .

[54]  Zachariah Oommen,et al.  Dynamic mechanical analysis of banana fiber reinforced polyester composites , 2003 .

[55]  Mansoor M. Amiji,et al.  BIODEGRADABLE POLY (E-CAPROLACTONE) NANOPARTICLES FOR TUMOR-TARGETED DELIVERY OF TAMOXIFEN , 2002 .

[56]  R. Langer,et al.  A tough biodegradable elastomer , 2002, Nature Biotechnology.

[57]  R. Langer,et al.  Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications , 2002, Science.

[58]  W. Winter,et al.  Nanocomposites of Cellulose Acetate Butyrate Reinforced with Cellulose Nanocrystals , 2002 .

[59]  C. Ha,et al.  Microstructure, tensile properties, and biodegradability of aliphatic polyester/clay nanocomposites , 2002 .

[60]  A. Pelton,et al.  An overview of nitinol medical applications , 1999 .

[61]  K. Pandey A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy , 1999 .

[62]  V. Favier,et al.  Mechanical percolation in cellulose whisker nanocomposites , 1997 .

[63]  Véronique Favier,et al.  Simulation and modeling of three-dimensional percolating structures: Case of a latex matrix reinforced by a network of cellulose fibers , 1997 .

[64]  Véronique Favier,et al.  Polymer Nanocomposites Reinforced by Cellulose Whiskers , 1995 .

[65]  N. Tietz,et al.  Lipase in serum--the elusive enzyme: an overview. , 1993, Clinical chemistry.

[66]  M. Gottlieb,et al.  Effect of crosslinks on the glass transition temperature of end-linked elastomers , 1992 .

[67]  Masaru Matsuo,et al.  Effect of orientation distribution and crystallinity on the measurement by x-ray diffraction of the crystal lattice moduli of cellulose I and II , 1990 .

[68]  C. Rudd,et al.  Physico-chemical and mechanical properties of nanocomposites prepared using cellulose nanowhiskers and poly(lactic acid) , 2011, Journal of Materials Science.

[69]  Stuart J. Rowan,et al.  Bio-inspired mechanically-adaptive nanocomposites derived from cotton cellulose whiskers , 2010 .

[70]  Ken Gall,et al.  Shape-Memory Polymers for Biomedical Applications , 2009 .

[71]  Aldo R Boccaccini,et al.  Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue. , 2008, Biomaterials.

[72]  M. Reboredo,et al.  Modified woodflour as thermoset fillersPart I. Effect of the chemical modification and percentage of filler on the mechanical properties , 2001 .

[73]  Masamichi Kobayashi,et al.  THEORETICAL EVALUATION OF THREE-DIMENSIONAL ELASTIC CONSTANTS OF NATIVE AND REGENERATED CELLULOSES : ROLE OF HYDROGEN BONDS , 1991 .

[74]  A. Kalashnik,et al.  Liquid crystal state of cellulose , 1991 .

[75]  P. Painter,et al.  Hydrogen bonding in polymer blends. 1. FTIR studies of urethane-ether blends , 1988 .

[76]  J. Mann,et al.  X-ray measurements of the elastic modulus of cellulose crystals , 1962 .