Representation Operators and Computation

This paper analyses the impact of representation and search operators on Computational Complexity. A model of computation is introduced based on a directed graph, and representation and search are defined to be the vertices and edges of this graph respectively. Changing either the representation or the search algorithm leads to different possible complexity classes. The final section explores the role of representation in reducing time complexity in Artificial Intelligence.

[1]  Alastair Hannay,et al.  The Imagery Debate. , 1993 .

[2]  John McCarthy,et al.  Programs with common sense , 1960 .

[3]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[4]  Elliott Mendelson,et al.  Introduction to Mathematical Logic , 1979 .

[5]  András Lörincz,et al.  Genetic algorithm with alphabet optimization , 1995, Biological Cybernetics.

[6]  Tim Jones Evolutionary Algorithms, Fitness Landscapes and Search , 1995 .

[7]  Elliott Mendelson,et al.  Introduction to mathematical logic (3. ed.) , 1987 .

[8]  John Haugeland,et al.  Artificial intelligence - the very idea , 1987 .

[9]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[10]  K. Sterelny The Imagery Debate , 1986, Philosophy of Science.

[11]  John R. Koza,et al.  Genetic programming 2 - automatic discovery of reusable programs , 1994, Complex Adaptive Systems.

[12]  Terrence J. Sejnowski,et al.  The Computational Brain , 1996, Artif. Intell..

[13]  D. Wolpert,et al.  No Free Lunch Theorems for Search , 1995 .

[14]  A. Clark,et al.  Artificial Intelligence: The Very Idea. , 1988 .

[15]  J M Bekkers,et al.  Apical Dendritic Location of Slow Afterhyperpolarization Current in Hippocampal Pyramidal Neurons: Implications for the Integration of Long-Term Potentiation , 1996, The Journal of Neuroscience.

[16]  György E. Révész Introduction to formal languages , 1983 .

[17]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[18]  D. Simonton Individual differences, developmental changes, and social context , 1994, Behavioral and Brain Sciences.

[19]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[20]  A. Clark,et al.  Trading spaces: Computation, representation, and the limits of uninformed learning , 1997, Behavioral and Brain Sciences.

[21]  Virendrakumar C. Bhavsar,et al.  Can a vector space based learning model discover inductive class generalization in a symbolic environment? , 1995, Pattern Recognit. Lett..

[22]  D. E. Goldberg,et al.  An analysis of a reordering operator on a GA-hard problem , 1990, Biological Cybernetics.

[23]  S. Pinker,et al.  Connections and symbols , 1988 .

[24]  H. Wellman The Child's Theory of Mind , 1990 .

[25]  J. Crutchfield The calculi of emergence: computation, dynamics and induction , 1994 .

[26]  D. Hubel,et al.  Anatomical demonstration of orientation columns in macaque monkey , 1978, The Journal of comparative neurology.

[27]  Douglas B. Lenat,et al.  CYC: a large-scale investment in knowledge infrastructure , 1995, CACM.

[28]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[29]  Ryszard S. Michalski,et al.  Hypothesis-Driven Constructive Induction in AQ17-HCI: A Method and Experiments , 1994, Machine Learning.

[30]  Cherri M. Pancake,et al.  The promise and the cost of object technology: a five-year forecast , 1995, CACM.

[31]  S. Kosslyn Image and brain: the resolution of the imagery debate , 1994 .

[32]  Philipp Slusallek,et al.  Introduction to real-time ray tracing , 2005, SIGGRAPH Courses.

[33]  Kim Sterelny,et al.  The Imagery Debate , 1991 .

[34]  Larry A. Rendell,et al.  Improving the Design of Induction Methods by Analyzing Algorithm Functionality and Data-Based Concept Complexity , 1993, IJCAI.

[35]  Nicholas J. Radcliffe,et al.  The algebra of genetic algorithms , 1994, Annals of Mathematics and Artificial Intelligence.

[36]  Allen R. Hanson,et al.  Fundamentals of computing sciences , 1978 .

[37]  J. Elman Learning and development in neural networks: the importance of starting small , 1993, Cognition.

[38]  Larry A. Rendell,et al.  Rerepresenting and Restructuring Domain Theories: A Constructive Induction Approach , 1994, J. Artif. Intell. Res..

[39]  J. Kingdon,et al.  The shape of space , 1995 .

[40]  Janusz Wnek,et al.  Hypothesis-driven constructive induction , 1993 .

[41]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[42]  Saul Amarel,et al.  On representations of problems of reasoning about actions , 1968 .