A-infinity algebras associated with elliptic curves and Eisenstein-Kronecker series

We compute the A-infinity structure on the self-Ext algebra of the vector bundle $G$ over an elliptic curve of the form $G=\bigoplus_{i=1}^r P_i\oplus \bigoplus_{j=1}^s L_j$, where $(P_i)$ and $(L_j)$ are line bundles of degrees 0 and 1, respectively. The answer is given in terms of Eisenstein-Kronecker numbers $(e^*_{a,b}(z,w))$. The A-infinity constraints lead to quadratic polynomial identities between these numbers, allowing to express them in terms of few ones. Another byproduct of the calculation is the new representation for $e^*_{a,b}(z,w)$ by rapidly converging series.

[1]  A. Polishchuk Moduli of curves as moduli of $A_{\infty}$-structures , 2013, 1312.4636.

[2]  A. Polishchuk,et al.  A modular compactification of $\mathcal{M}_{1,n}$ from $A_\infty$-structures , 2014, 1408.0611.

[3]  Junwu Tu On the reconstruction problem in mirror symmetry , 2012, 1208.5912.

[4]  Junwu Tu Homological Mirror Symmetry and Fourier–Mukai Transform , 2012, 1201.6454.

[5]  A. Polishchuk A∞-Algebra of an Elliptic Curve and Eisenstein Series , 2009, 0911.2814.

[6]  K. Fukaya Cyclic symmetry and adic convergence in Lagrangian Floer theory , 2009, 0907.4219.

[7]  Kenichi Bannai,et al.  Algebraic theta functions and the $p$-adic interpolation of Eisenstein-Kronecker numbers , 2006, math/0610163.

[8]  A. Polishchuk Classical Yang–Baxter Equation and the A∞-Constraint , 2002 .

[9]  M. Kontsevich,et al.  Homological mirror symmetry and torus fibrations , 2000, math/0011041.

[10]  A. Polishchuk Rapidly convergent series for the Weierstrass zeta-function and the Kronecker function , 2000, math/0005088.

[11]  Bernhard Keller,et al.  Introduction to $A$-infinity algebras and modules , 1999, math/9910179.

[12]  A. Polishchuk Homological mirror symmetry with higher products , 1999, math/9901025.

[13]  S. Merkulov Strong homotopy algebras of a Kähler manifold , 1998 .

[14]  Pierre Colmez,et al.  $p$-adic interpolation of special values of Hecke L-functions , 1992 .

[15]  André Weil,et al.  Elliptic Functions according to Eisenstein and Kronecker , 1976 .