Increased Photoconductivity Lifetime in GaAs Nanowires by Controlled n-Type and p-Type Doping.

Controlled doping of GaAs nanowires is crucial for the development of nanowire-based electronic and optoelectronic devices. Here, we present a noncontact method based on time-resolved terahertz photoconductivity for assessing n- and p-type doping efficiency in nanowires. Using this technique, we measure extrinsic electron and hole concentrations in excess of 10(18) cm(-3) for GaAs nanowires with n-type and p-type doped shells. Furthermore, we show that controlled doping can significantly increase the photoconductivity lifetime of GaAs nanowires by over an order of magnitude: from 0.13 ns in undoped nanowires to 3.8 and 2.5 ns in n-doped and p-doped nanowires, respectively. Thus, controlled doping can be used to reduce the effects of parasitic surface recombination in optoelectronic nanowire devices, which is promising for nanowire devices, such as solar cells and nanowire lasers.

[1]  Chennupati Jagadish,et al.  Transient Terahertz Conductivity of GaAs Nanowires , 2007 .

[2]  Ningfeng Huang,et al.  Electrical and optical characterization of surface passivation in GaAs nanowires. , 2012, Nano letters.

[3]  Yu Huang,et al.  Indium Phosphide Nanowires as Building Blocks for Nanoscale Electronic and Optoelectronic Devices. , 2001 .

[4]  J. Motohisa,et al.  Characterizing the electron transport properties of a single 〈110〉 InAs nanowire , 2014 .

[5]  A. F. Morral,et al.  Wetting of Ga on SiOx and Its Impact on GaAs Nanowire Growth , 2015 .

[6]  A. F. Morral,et al.  Compensation mechanism in silicon-doped gallium arsenide nanowires , 2010 .

[7]  F. Teppe,et al.  Room temperature terahertz detectors based on semiconductor nanowire field effect transistors , 2012, OPTO.

[8]  James Lloyd-Hughes,et al.  A Review of the Terahertz Conductivity of Bulk and Nano-Materials , 2012 .

[9]  M. Ramsteiner,et al.  Shell-doping of GaAs nanowires with Si for n-type conductivity , 2012, Nano Research.

[10]  Qingtao Zhou,et al.  Synthesis and characterization of indium-doped ZnO nanowires with periodical single-twin structures. , 2006, The journal of physical chemistry. B.

[11]  Charles M. Lieber,et al.  Single nanowire photovoltaics. , 2009, Chemical Society reviews.

[12]  A Gustafsson,et al.  Self-assembled quantum dots in a nanowire system for quantum photonics. , 2013, Nature materials.

[13]  B. Fimland,et al.  A story told by a single nanowire: optical properties of wurtzite GaAs. , 2012, Nano letters.

[14]  P. Y. Yu,et al.  Fundamentals of Semiconductors , 1995 .

[15]  H. Němec,et al.  Bulk-like transverse electron mobility in an array of heavily n -doped InP nanowires probed by terahertz spectroscopy , 2014 .

[16]  H. Tan,et al.  III–V semiconductor nanowires for optoelectronic device applications , 2011, 2013 International Conference on Microwave and Photonics (ICMAP).

[17]  Chennupati Jagadish,et al.  Carrier lifetime and mobility enhancement in nearly defect-free core-shell nanowires measured using time-resolved terahertz spectroscopy. , 2009, Nano letters.

[18]  Chennupati Jagadish,et al.  Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy , 2013, Nanotechnology.

[19]  D. Grützmacher,et al.  MOVPE of n-doped GaAs and modulation doped GaAs/AlGaAs nanowires , 2010 .

[20]  K. West,et al.  Electron mobilities exceeding 107 cm2/V s in modulation‐doped GaAs , 1989 .

[21]  Kenji Hiruma,et al.  GaAs p‐n junction formed in quantum wire crystals , 1992 .

[22]  Fang Qian,et al.  Nanowire electronic and optoelectronic devices , 2006 .

[23]  W. Prost,et al.  n-Type Doping of Vapor–Liquid–Solid Grown GaAs Nanowires , 2010, Nanoscale research letters.

[24]  P. Krogstrup,et al.  Doping incorporation paths in catalyst-free Be-doped GaAs nanowires , 2012, 1210.1670.

[25]  Michael Grätzel,et al.  Gallium arsenide p-i-n radial structures for photovoltaic applications , 2009 .

[26]  Jeffrey G. Cederberg,et al.  Efficient terahertz emission from InAs nanowires , 2011 .

[27]  K. Bertness,et al.  Noncontact measurement of charge carrier lifetime and mobility in GaN nanowires. , 2012, Nano letters.

[28]  Lloyd M. Smith,et al.  Photoexcited carrier lifetimes and spatial transport in surface‐free GaAs homostructures , 1990 .

[29]  V. Zwiller,et al.  Single quantum dot nanowire LEDs. , 2007, Nano letters.

[30]  A. Fontcuberta i Morral,et al.  P-doping mechanisms in catalyst-free gallium arsenide nanowires. , 2010, Nano letters.

[31]  D. Thompson,et al.  GaAs core--shell nanowires for photovoltaic applications. , 2009, Nano letters.

[32]  Charles M. Lieber,et al.  Doping and Electrical Transport in Silicon Nanowires , 2000 .

[33]  T. Salminen,et al.  Te-doping of self-catalyzed GaAs nanowires , 2015 .

[34]  Chennupati Jagadish,et al.  Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy. , 2012, Nano letters.

[35]  H. Tan,et al.  Optically pumped room-temperature GaAs nanowire lasers , 2013, Nature Photonics.

[36]  Lars Samuelson,et al.  Spatially resolved Hall effect measurement in a single semiconductor nanowire. , 2012, Nature nanotechnology.

[37]  Delta(δ)‐doping of semiconductor nanowires , 2013 .

[38]  Emanuele Uccelli,et al.  Mobility and carrier density in p-type GaAs nanowires measured by transmission Raman spectroscopy. , 2012, Nanoscale.

[39]  Charles M. Lieber,et al.  Single-nanowire electrically driven lasers , 2003, Nature.

[40]  Anna Fontcuberta i Morral,et al.  Modulation doping of GaAs/AlGaAs core-shell nanowires with effective defect passivation and high electron mobility. , 2015, Nano letters.

[41]  Martin Heiss,et al.  Impact of surfaces on the optical properties of GaAs nanowires , 2010 .

[42]  V. Sundström,et al.  Influence of plasmons on terahertz conductivity measurements , 2005 .

[43]  A. Bertoni,et al.  High mobility one- and two-dimensional electron systems in nanowire-based quantum heterostructures. , 2013, Nano letters.

[44]  A. Bertoni,et al.  Unintentional high-density p-type modulation doping of a GaAs/AlAs core-multishell nanowire. , 2014, Nano letters.

[45]  L. Herz,et al.  Ultrafast Energy Transfer in Biomimetic Multistrand Nanorings , 2014, Journal of the American Chemical Society.

[46]  Lyubov V. Titova,et al.  Temperature dependence of photoluminescence from single core-shell GaAs–AlGaAs nanowires , 2006 .

[47]  G. Abstreiter,et al.  Time-resolved photoinduced thermoelectric and transport currents in GaAs nanowires. , 2012, Nano letters.

[48]  O. Brandt,et al.  Suitability of Au- and self-assisted GaAs nanowires for optoelectronic applications. , 2011, Nano letters.

[49]  Charles M. Lieber,et al.  GaN nanowire lasers with low lasing thresholds , 2005 .

[50]  L. Allard,et al.  Realization of defect-free epitaxial core-shell GaAs/AlGaAs nanowire heterostructures , 2008 .

[51]  L. M. Smith,et al.  Room temperature photocurrent spectroscopy of single zincblende and wurtzite InP nanowires , 2009 .

[52]  P. Vogl,et al.  nextnano: General Purpose 3-D Simulations , 2007, IEEE Transactions on Electron Devices.

[53]  M. Ramsteiner,et al.  Incorporation of the dopants Si and Be into GaAs nanowires , 2010 .

[54]  G. Mugny,et al.  Three-dimensional multiple-order twinning of self-catalyzed GaAs nanowires on Si substrates. , 2011, Nano letters.

[55]  Radiative recombination in surface‐free n+/n−/n+GaAs homostructures , 1990 .

[56]  G. Abstreiter,et al.  Free standing modulation doped core–shell GaAs/AlGaAs hetero‐nanowires , 2011 .

[57]  K. Nielsch,et al.  Electrical transport in C‐doped GaAs nanowires: surface effects , 2013, 1304.5891.

[58]  Elias Vlieg,et al.  Twinning superlattices in indium phosphide nanowires , 2008, Nature.

[59]  K. Köhler,et al.  Auger recombination in intrinsic GaAs , 1993 .

[60]  Fan Wang,et al.  Single nanowire photoconductive terahertz detectors. , 2015, Nano letters.

[61]  Chennupati Jagadish,et al.  Electron mobilities approaching bulk limits in "surface-free" GaAs nanowires. , 2014, Nano letters.

[62]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.