A comparison of the MIR-estimated and model-calculated fresh water surface emissivities at 89, 150, and 220 GHz
暂无分享,去创建一个
[1] Andrew S. Jones,et al. Evaluation of seawater permittivity models at 150 GHz using satellite observations , 1999, IEEE Trans. Geosci. Remote. Sens..
[2] Tim J. Hewison,et al. Airborne retrievals of snow and ice surface emissivity at millimeter wavelengths , 1999, IEEE Trans. Geosci. Remote. Sens..
[3] Niklaus Kämpfer,et al. Weighted mean tropospheric temperature and transmittance determination at millimeter‐wave frequencies for ground‐based applications , 1998 .
[4] Frank Wentz,et al. Measurement of oceanic wind vector using satellite microwave radiometers , 1992, IEEE Trans. Geosci. Remote. Sens..
[5] A. Stogryn,et al. Equations for Calculating the Dielectric Constant of Saline Water (Correspondence) , 1971 .
[6] W. Paul Menzel,et al. Airborne Scanning Spectrometer for Remote Sensing of Cloud, Aerosol, Water Vapor, and Surface Properties , 1996 .
[7] Hans J. Liebe,et al. MPM—An atmospheric millimeter-wave propagation model , 1989 .
[8] C. Prigent,et al. New permittivity measurements of seawater , 1998 .
[9] David H. Staelin,et al. Remote Sensing of Atmospheric Water Vapor and Liquid Water with the Nimbus 5 Microwave Spectrometer , 1976 .
[10] Henry E. Revercomb,et al. Radiometric evaluation of MODIS emissive bands through comparison to ER-2-based MAS data , 2002, Optics + Photonics.
[11] Dorothy K. Hall,et al. Detection of Snow Cover Using Millimeter-Wave Imaging Radiometer (MIR) Data , 1999 .
[12] P. Rosenkranz. Water vapor microwave continuum absorption: A comparison of measurements and models , 1998 .
[13] Paul Racette,et al. A Comparison of Clear-Sky Emission Models with Data Taken During the 1999 Millimeter-Wave Radiometric Arctic Winter Water Vapor Experiment , 2000 .
[14] Merritt N. Deeter,et al. A Novel Ice-Cloud Retrieval Algorithm Based on the Millimeter-Wave Imaging Radiometer (MIR) 150- and 220-GHz Channels , 2000 .
[15] Paul Racette,et al. Retrieval of precipitable water vapor by the millimeter-wave imaging radiometer in the arctic region during FIRE-ACE , 2001, IEEE Trans. Geosci. Remote. Sens..
[16] David H. Staelin,et al. Precipitation observations near 54 and 183 GHz using the NOAA-15 satellite , 2000, IEEE Trans. Geosci. Remote. Sens..
[17] J. Spinhirne,et al. Cirrus infrared parameters and shortwave reflectance relations from observations , 1996 .
[18] Xiangqian Wu,et al. Effects of precipitation and cloud ice on brightness temperatures in AMSU moisture channels , 1997, IEEE Trans. Geosci. Remote. Sens..
[19] Paul Racette,et al. Retrievals of column water vapor using millimeter-wave radiometric measurements , 2002, IEEE Trans. Geosci. Remote. Sens..
[20] Louis Lyons,et al. A practical guide to data analysis for physical science students: Random numbers , 1991 .
[21] Christopher Ruf,et al. Detection of calibration drifts in spaceborne microwave radiometers using a vicarious cold reference , 2000, IEEE Trans. Geosci. Remote. Sens..
[22] C. Swift,et al. An improved model for the dielectric constant of sea water at microwave frequencies , 1977 .
[23] Paul Racette,et al. An Airborne Millimeter-Wave Imaging Radiometer for Cloud, Precipitation, and Atmospheric Water Vapor Studies , 1996 .
[24] Paul Racette,et al. Simultaneous measurements of atmospheric water vapor with MIR, Raman lidar, and rawinsondes , 1995 .
[25] T. Manabe,et al. A model for the complex permittivity of water at frequencies below 1 THz , 1991 .