Enhancement of Perpendicular Magnetic Anisotropy Through Fe Insertion at the CoFe/W Interface

Magnetic tunnel junctions (MTJs) based on MgO/CoFeB/W structures are of particular interest for magnetic random access memories due to their high tunnel magnetoresistance, low damping, and stable properties at high annealing temperature. One of the major challenges is to obtain a strong interfacial perpendicular magnetic anisotropy (PMA) for sufficient thermal stability during data storage. Here we investigate magnetic anisotropy energies (MAEs) in the ferromagnet (FM)/W structure with different FM materials and interface insertions. We find that the Fe/W interface exhibits a remarkable PMA, whereas the Co/W interface displays a large in-plane anisotropy, which reduces the PMA in the MgO/CoFeB/W structure. By inserting a thin Fe layer at the CoFe/W interface, the interfacial PMA can be enhanced to 3.34 mJ/m2. Microscopic mechanism behind these phenomena is explained with the changes of orbital-resolved MAEs due to the charge redistribution at the interface. These findings pave a new way for the enhancement of PMA and point toward the possibility of achieving high thermal stability in small-node MTJs.

[1]  Zhaohao Wang,et al.  High-Density NAND-Like Spin Transfer Torque Memory With Spin Orbit Torque Erase Operation , 2018, IEEE Electron Device Letters.

[2]  Weisheng Zhao,et al.  Large voltage-controlled magnetic anisotropy in the SrTiO3/Fe/Cu structure , 2017 .

[3]  A. Fert,et al.  Current-induced magnetization switching in atom-thick tungsten engineered perpendicular magnetic tunnel junctions with large tunnel magnetoresistance , 2017, Nature Communications.

[4]  B. Diény,et al.  Enhanced annealing stability and perpendicular magnetic anisotropy in perpendicular magnetic tunnel junctions using W layer , 2017 .

[5]  Kang L. Wang,et al.  Perpendicular magnetic tunnel junction with W seed and capping layers , 2017 .

[6]  Kang L. Wang,et al.  Interfacial Perpendicular Magnetic Anisotropy in Sub-20 nm Tunnel Junctions for Large-Capacity Spin-Transfer Torque Magnetic Random-Access Memory , 2017, IEEE Magnetics Letters.

[7]  Kang L. Wang,et al.  Enhancement of voltage-controlled magnetic anisotropy through precise control of Mg insertion thickness at CoFeB|MgO interface , 2017 .

[8]  J. Qiao,et al.  Influence of heavy metal materials on magnetic properties of Pt/Co/heavy metal tri-layered structures , 2016, 2017 IEEE International Magnetics Conference (INTERMAG).

[9]  Weisheng Zhao,et al.  Large influence of capping layers on tunnel magnetoresistance in magnetic tunnel junctions , 2016, 1605.06802.

[10]  Weisheng Zhao,et al.  Giant interfacial perpendicular magnetic anisotropy in MgO/CoFe/capping layer structures , 2016, 1605.02247.

[11]  Jin-Pyo Hong,et al.  Ultrathin W space layer-enabled thermal stability enhancement in a perpendicular MgO/CoFeB/W/CoFeB/MgO recording frame , 2015, Scientific Reports.

[12]  Nicolas Rougemaille,et al.  Anatomy and Giant Enhancement of the Perpendicular Magnetic Anisotropy of Cobalt-Graphene Heterostructures. , 2015, Nano letters.

[13]  Kang L. Wang,et al.  Origin of interfacial perpendicular magnetic anisotropy in MgO/CoFe/metallic capping layer structures , 2015, Scientific Reports.

[14]  Jin-Pyo Hong,et al.  Highly stable perpendicular magnetic anisotropies of CoFeB/MgO frames employing W buffer and capping layers , 2015 .

[15]  Youguang Zhang,et al.  Reconfigurable Codesign of STT-MRAM Under Process Variations in Deeply Scaled Technology , 2015, IEEE Transactions on Electron Devices.

[16]  Andrew D Kent,et al.  A new spin on magnetic memories. , 2015, Nature nanotechnology.

[17]  Shoji Ikeda,et al.  Properties of magnetic tunnel junctions with a MgO/CoFeB/Ta/CoFeB/MgO recording structure down to junction diameter of 11 nm , 2014 .

[18]  B. Diény,et al.  Anatomy of perpendicular magnetic anisotropy in Fe/MgO magnetic tunnel junctions: First-principles insight , 2013, 1308.2909.

[19]  H. Ohno,et al.  MgO/CoFeB/Ta/CoFeB/MgO Recording Structure in Magnetic Tunnel Junctions With Perpendicular Easy Axis , 2013, IEEE Transactions on Magnetics.

[20]  T. Miyazaki,et al.  Effect of Mg interlayer on perpendicular magnetic anisotropy of CoFeB films in MgO/Mg/CoFeB/Ta structure , 2012 .

[21]  H. Ohno,et al.  Perpendicular-anisotropy CoFeB-MgO magnetic tunnel junctions with a MgO/CoFeB/Ta/CoFeB/MgO recording structure , 2012 .

[22]  M. Gajek,et al.  Spin torque switching of 20 nm magnetic tunnel junctions with perpendicular anisotropy , 2012 .

[23]  C. Nan,et al.  High-density magnetoresistive random access memory operating at ultralow voltage at room temperature , 2011, Nature communications.

[24]  B. Diény,et al.  First-principles investigation of the very large perpendicular magnetic anisotropy at Fe|MgO and Co|MgO interfaces , 2010, 1011.5667.

[25]  H. Ohno,et al.  A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. , 2010, Nature materials.

[26]  Mircea R. Stan,et al.  Advances and Future Prospects of Spin-Transfer Torque Random Access Memory , 2010, IEEE Transactions on Magnetics.

[27]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[28]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[29]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[30]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[31]  Hafner,et al.  Ab initio molecular dynamics for open-shell transition metals. , 1993, Physical review. B, Condensed matter.

[32]  Wu,et al.  First-principles theory of surface magnetocrystalline anisotropy and the diatomic-pair model. , 1993, Physical review. B, Condensed matter.

[33]  Wang,et al.  Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. , 1991, Physical review. B, Condensed matter.