Polarization of cluster radio halos with upcoming radio interferometers

Context. Synchrotron radio halos at the center of merging galaxy clusters provide the most spectacular and direct evidence of the presence of relativistic particles and magnetic fields associated with the intracluster medium. The study of polarized emission from radio halos has been shown to be extremely important to constrain the properties of intracluster magnetic fields. However, detecting this polarized signal is a very hard task with the current radio facilities. Aims. We investigate whether future radio observatories, such as the Square Kilometer Array (SKA), its precursors and its pathfinders, will be able to detect the polarized emission of radio halos in galaxy clusters. Methods. On the basis of cosmological magnetohydrodynamical simulations with initial magnetic fields injected by active galactic nuclei, we predict the expected radio halo polarized signal at 1.4 GHz. We compare these expectations with the limits of current radio facilities and explore the potential of the upcoming radio interferometers to investigate intracluster magnetic fields through the detection of polarized emission from radio halos. Results. The resolution and sensitivity values that are expected to be obtained in future sky surveys performed at 1.4 GHz using the SKA precursors and pathfinders (like APERTIF and ASKAP) are very promising for the detection of the polarized emission of the most powerful (L1.4 GHz > 10 25 Watt/Hz) radio halos. Furthermore, the JVLA have the potential to already detect polarized emission from strong radio halos, at a relatively low resolution. However, the possibility of detecting the polarized signal in fainter radio halos (L1.4 GHz � 10 24 Watt/Hz) at high resolution requires a sensitivity reachable only with SKA.

[1]  K. Institute,et al.  Faraday rotation measure synthesis , 2005, astro-ph/0507349.

[2]  G. Bernardi,et al.  Deep multi-frequency rotation measure tomography of the galaxy cluster A2255 , 2010, 1008.3530.

[3]  D. J. Saikia,et al.  EMU: Evolutionary Map of the Universe , 2011, Publications of the Astronomical Society of Australia.

[4]  M. Norman,et al.  EVOLUTION AND DISTRIBUTION OF MAGNETIC FIELDS FROM ACTIVE GALACTIC NUCLEI IN GALAXY CLUSTERS. I. THE EFFECT OF INJECTION ENERGY AND REDSHIFT , 2010, 1011.0030.

[5]  Evolution and structure of magnetic fields in simulated galaxy clusters , 2002, astro-ph/0202272.

[6]  P. C. Tribble Radio emission in a random magnetic field : radio haloes and the structure of the magnetic field in the Coma cluster , 1991 .

[7]  Magnetic Field Evolution in Merging Clusters of Galaxies , 1999, astro-ph/9902105.

[8]  H. Ebeling,et al.  Revealing the magnetic field in a distant galaxy cluster: discovery of the complex radio emission from MACS J0717.5 +3745 , 2009, 0905.3552.

[9]  Hui Li,et al.  Cosmological AMR MHD with Enzo , 2009, 0902.2594.

[10]  M. Markevitch,et al.  Comparative analysis of the diffuse radio emission in the galaxy clusters A1835, A2029, and Ophiuchus , 2009, 0901.1943.

[11]  A. Bonafede,et al.  Fractional polarization as a probe of magnetic fields in the intra-cluster medium , 2011 .

[12]  K. Dolag,et al.  Cluster magnetic fields from galactic outflows , 2008, 0808.0919.

[13]  J. Condon,et al.  Confusion and flux-density error distributions , 1974 .

[14]  Gabriele Giovannini,et al.  Clusters of galaxies: observational properties of the diffuse radio emission , 2012, The Astronomy and Astrophysics Review.

[15]  Tracy E. Clarke,et al.  Deep 1.4 GHz Very Large Array Observations of the Radio Halo and Relic in Abell 2256 , 2006, astro-ph/0603166.

[16]  G. Giovannini,et al.  A2255: the First Detection of Filamentary Polarized Emission in a Radio Halo , 2004, astro-ph/0411720.

[17]  M. Johnston-Hollitt,et al.  ON THE RELIABILITY OF POLARIZATION ESTIMATION USING ROTATION MEASURE SYNTHESIS , 2012, 1203.2706.

[18]  V. Vacca,et al.  The intracluster magnetic field power spectrum in Abell 2255 , 2006, astro-ph/0608433.

[19]  Shengtai Li,et al.  TURBULENCE AND DYNAMO IN GALAXY CLUSTER MEDIUM: IMPLICATIONS ON THE ORIGIN OF CLUSTER MAGNETIC FIELDS , 2009, 0905.2196.

[20]  G. Giovannini,et al.  Deep images of cluster radio halos , 2003 .

[21]  S. Bardelli,et al.  GMRT radio halo survey in galaxy clusters at z = 0.2–0.4 - II. The eBCS clusters and analysis of the complete sample , 2008, 0803.4084.

[22]  Michael L. Norman,et al.  COSMOLOGICAL ADAPTIVE MESH REFINEMENT MAGNETOHYDRODYNAMICS WITH ENZO , 2010 .

[23]  K. Dolag,et al.  The Coma cluster magnetic field from Faraday rotation measures , 2009, 1002.0594.

[24]  A comparison of radio and X-ray morphologies of four clusters of galaxies containing radio halos , 2001, astro-ph/0101418.

[25]  R. Cen,et al.  COMPARISONS OF COSMOLOGICAL MAGNETOHYDRODYNAMIC GALAXY CLUSTER SIMULATIONS TO RADIO OBSERVATIONS , 2012, 1209.2737.

[26]  J. Silk,et al.  Influence of AGN jets on the magnetized ICM , 2009, 0905.3345.

[27]  L. Widrow,et al.  Origin of galactic and extragalactic magnetic fields , 2002, astro-ph/0207240.

[28]  T. Budavari,et al.  Radio Continuum Surveys with Square Kilometre Array Pathfinders , 2012, Publications of the Astronomical Society of Australia.

[29]  M. Norman,et al.  EVOLUTION AND DISTRIBUTION OF MAGNETIC FIELDS FROM ACTIVE GALACTIC NUCLEI IN GALAXY CLUSTERS. II. THE EFFECTS OF CLUSTER SIZE AND DYNAMICAL STATE , 2011, 1107.2599.

[30]  K. Dolag,et al.  Non-Thermal Processes in Cosmological Simulations , 2008, 0801.1048.

[31]  Low frequency study of two clusters of galaxies: A2744 and A2219 , 2007, astro-ph/0701776.

[32]  C. Benoist,et al.  Detection of diffuse radio emission in the galaxy clusters A800, A910, A1550, and CL 1446+26 , 2012, 1207.2915.

[33]  R. Teyssier,et al.  Cosmological MHD simulation of a cooling flow cluster , 2008, 0802.0490.

[34]  C. D. Vecchia,et al.  Simulations of Magnetic Fields in Filaments , 2005 .

[35]  G. Brunetti,et al.  Radio halos in future surveys in the radio continuum , 2012, 1210.1020.

[36]  F. Ferrari,et al.  Radio halos in nearby (z < 0.4) clusters of galaxies , 2009, 0909.0911.

[37]  A. Edge,et al.  Discovery of radio haloes and double relics in distant MACS galaxy clusters: clues to the efficiency of particle acceleration , 2012, 1206.6102.

[38]  R. Pizzo,et al.  Radio spectral study of the cluster of galaxies Abell 2255 , 2009, 0909.5198.

[39]  R. Hunstead,et al.  A Powerful Radio Halo in the Hottest Known Cluster of Galaxies 1E 0657–56 , 2000, astro-ph/0006072.

[40]  V. Vacca,et al.  Discovery of diffuse radio emission in the galaxy cluster A1689 , 2011, 1106.6228.

[41]  S. Borgani,et al.  A non-ideal magnetohydrodynamic GADGET: simulating massive galaxy clusters , 2011, 1107.0968.

[42]  Shea Brown,et al.  Diffuse radio emission in/around the Coma cluster: beyond simple accretion , 2010, 1009.4258.

[43]  M. Murgia,et al.  Magnetic fields and Faraday rotation in clusters of galaxies , 2004 .

[44]  K. Dolag,et al.  Radio haloes from simulations and hadronic models – I. The Coma cluster , 2009, 0905.2418.