Multiway covariates regression models

An abundance of methods exist to regress a y variable on a set of x variables collected in a matrix X. In the chemical sciences a growing number of problems translate into arrays of measurements X and Y , where X and Y are three‐way arrays or multiway arrays. In this paper a general model is described for regressing such a multiway Y on a multiway X , while taking into account three‐way structures in X and Y . A global least squares optimization problem is formulated to estimate the parameters of the model. The model is described and illustrated with a real industrial example from batch process operation. An algorithm is given in an appendix. Copyright © 1999 John Wiley & Sons, Ltd.

[1]  J. Leeuw,et al.  Principal component analysis of three-mode data by means of alternating least squares algorithms , 1980 .

[2]  R. Bro,et al.  A fast non‐negativity‐constrained least squares algorithm , 1997 .

[3]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[4]  Pieter M. Kroonenberg,et al.  An efficient algorithm for TUCKALS3 on data with large numbers of observation units , 1992 .

[5]  Henk A. L. Kiers,et al.  Principal covariates regression: Part I. Theory , 1992 .

[6]  Sijmen de Jong,et al.  Regression coefficients in multilinear PLS , 1998 .

[7]  Bruce R. Kowalski,et al.  Tensorial calibration: II. Second‐order calibration , 1988 .

[8]  Henk A. L. Kiers,et al.  Hierarchical relations among three-way methods , 1991 .

[9]  John F. MacGregor,et al.  Multivariate SPC charts for monitoring batch processes , 1995 .

[10]  Age K. Smilde,et al.  Multicomponent Determination of Chlorinated Hydrocarbons Using a Reaction-Based Chemical Sensor. 3. Medium-Rank Second-Order Calibration with Restricted Tucker Models , 1994 .

[11]  A. Höskuldsson PLS regression methods , 1988 .

[12]  B. Kowalski,et al.  Partial least-squares regression: a tutorial , 1986 .

[13]  N. Cliff Orthogonal rotation to congruence , 1966 .

[14]  Lars St»hle,et al.  Aspects of the analysis of three-way data , 1989 .

[15]  A. E. Hoerl,et al.  Ridge regression: biased estimation for nonorthogonal problems , 2000 .

[16]  Norman R. Draper,et al.  Applied regression analysis (2. ed.) , 1981, Wiley series in probability and mathematical statistics.

[17]  Sijmen de Jong,et al.  Multiway calibration in 3D QSAR , 1997 .

[18]  Age K. Smilde,et al.  Some theoretical results on second‐order calibration methods for data with and without rank overlap , 1995 .

[19]  B. Everitt,et al.  Three-Mode Principal Component Analysis. , 1986 .

[20]  R. Bro Multiway calibration. Multilinear PLS , 1996 .

[21]  B. Kowalski,et al.  Theory of medium‐rank second‐order calibration with restricted‐Tucker models , 1994 .

[22]  Rasmus Bro,et al.  Improving the speed of multiway algorithms: Part II: Compression , 1998 .

[23]  R. Penrose On best approximate solutions of linear matrix equations , 1956, Mathematical Proceedings of the Cambridge Philosophical Society.

[24]  H. Neudecker,et al.  An approach ton-mode components analysis , 1986 .

[25]  S. Wold,et al.  Multi‐way principal components‐and PLS‐analysis , 1987 .

[26]  Hai-Long Wu,et al.  An alternating trilinear decomposition algorithm with application to calibration of HPLC–DAD for simultaneous determination of overlapped chlorinated aromatic hydrocarbons , 1998 .