Subcritical Connectivity and Some Exact Tail Exponents in High Dimensional Percolation

In high dimensional percolation at parameter p < pc, the one-arm probability πp(n) is known to decay exponentially on scale (pc − p)−1/2. We show the same statement for the ratio πp(n)/πpc(n), establishing a form of a hypothesis of scaling theory. As part of our study, we provide sharp estimates (with matching upper and lower bounds) for several quantities of interest at the critical probability pc. These include the tail behavior of volumes of, and chemical distances within, spanning clusters, along with the scaling of the two-point function at “mesoscopic distance” from the boundary of half-spaces. As a corollary, we obtain the tightness of the number of spanning clusters of a diameter n box on scale nd−6; this result complements a lower bound of Aizenman [1].

[1]  M. Damron,et al.  Strict Inequality for the Chemical Distance Exponent in Two‐Dimensional Critical Percolation , 2017, Communications on Pure and Applied Mathematics.

[2]  Takashi Hara,et al.  Decay of correlations in nearest-neighbor self-avoiding walk, percolation, lattice trees and animals. , 2005, math-ph/0504021.

[3]  Michael Aizenman,et al.  Percolation Critical Exponents Under the Triangle Condition , 1991 .

[4]  Wendelin Werner,et al.  One-Arm Exponent for Critical 2D Percolation , 2001 .

[5]  Charles M. Newman,et al.  Tree graph inequalities and critical behavior in percolation models , 1984 .

[6]  Conformally invariant scaling limits: an overview and a collection of problems , 2006, math/0602151.

[7]  W. C. V. Batenburg The dimension of the incipient infinite cluster , 2014, 1405.7606.

[8]  J. Hammersley Percolation Processes: Lower Bounds for the Critical Probability , 1957 .

[9]  M. Aizenman,et al.  Sharpness of the phase transition in percolation models , 1987 .

[10]  Wendelin Werner,et al.  Values of Brownian intersection exponents, I: Half-plane exponents , 1999 .

[11]  Harry Kesten,et al.  Percolation Theory and Ergodic Theory of Infinite Particle Systems , 1987 .

[12]  H. Duminil-Copin,et al.  A New Proof of the Sharpness of the Phase Transition for Bernoulli Percolation and the Ising Model , 2015, Communications in Mathematical Physics.

[13]  Joel H. Spencer,et al.  Uniform boundedness of critical crossing probabilities implies hyperscaling , 1999, Random Struct. Algorithms.

[14]  O. Schramm,et al.  Pivotal, cluster, and interface measures for critical planar percolation , 2010, 1008.1378.

[15]  Almut Burchard,et al.  Holder Regularity and Dimension Bounds for Random Curves , 1998 .

[16]  D. Kiss,et al.  Large deviation bounds for the volume of the largest cluster in 2D critical percolation , 2014, 1404.2118.

[17]  H. Kesten,et al.  Strict inequalities for some critical exponents in two-dimensional percolation , 1987 .

[18]  G. Kozma,et al.  Arm exponents in high dimensional percolation , 2009, 0911.0871.

[19]  H. Kesten A Scaling relation at criticality for 2D-Percolation , 1987 .

[20]  S. Chatterjee,et al.  Restricted Percolation Critical Exponents in High Dimensions , 2018, Communications on Pure and Applied Mathematics.

[21]  A. Sapozhnikov,et al.  Cycle structure of percolation on high-dimensional tori , 2011, 1109.1233.

[22]  Michael Aizenman,et al.  On the Number of Incipient Spanning Clusters , 1997 .

[23]  Oded Schramm,et al.  Scaling limits of loop-erased random walks and uniform spanning trees , 1999, math/9904022.

[24]  Artëm Sapozhnikovb Cycle structure of percolation on high-dimensional tori , 2014 .

[25]  A. Sakai Mean-Field Behavior for the Survival Probability and the Percolation Point-to-Surface Connectivity , 2004 .

[26]  J. Berg,et al.  On the size of the largest cluster in 2D critical percolation , 2012, 1208.4014.

[27]  Asaf Nachmias,et al.  The Alexander-Orbach conjecture holds in high dimensions , 2008, 0806.1442.

[28]  G. Slade,et al.  Mean-field critical behaviour for percolation in high dimensions , 1990 .

[29]  The sizes of the pioneering, lowest crossing and pivotal sites in critical percolation on the triangular lattice , 2005, math/0508459.

[30]  Mean-field critical behaviour for correlation length for percolation in high dimensions , 1990 .

[31]  Remco van der Hofstad,et al.  Random Graph Asymptotics on High-Dimensional Tori , 2005 .

[32]  S. Smirnov Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits , 2001 .

[33]  G. B. Arous,et al.  Scaling Limit for the Ant in High‐Dimensional Labyrinths , 2016, Communications on Pure and Applied Mathematics.

[34]  Gordon Slade,et al.  High-dimensional near-critical percolation and the torus plateau , 2021 .

[35]  W. Werner Lectures on two-dimensional critical percolation , 2007, 0710.0856.

[36]  Generalized approach to the non-backtracking lace expansion , 2015, 1506.07969.

[37]  Remco van der Hofstad,et al.  Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models , 2000, math-ph/0011046.

[38]  R. Hofstad,et al.  High-Dimensional Incipient Infinite Clusters Revisited , 2011, 1108.4325.

[39]  R. van der Hofstad,et al.  The Incipient Infinite Cluster for High-Dimensional Unoriented Percolation , 2004 .