Anisotropic formation and distribution of stacking faults in II-VI semiconductor nanorods.

Nanocrystals of cadmium selenide exhibit a form of polytypism with stable forms in both the wurtzite and zinc blende crystal structures. As a result, wurtzite nanorods of cadmium selenide tend to form stacking faults of zinc blende along the c-axis. These faults were found to preferentially form during the growth of the (001) face, which accounts for 40% of the rod's total length. Since II-VI semiconductor nanorods lack inversion symmetry along the c-axis of the particle, the two ends of the nanorod may be identified by this anisotropic distribution of faults.

[1]  A. Catellani,et al.  Direct determination of polarity, faceting, and core location in colloidal core/shell wurtzite semiconductor nanocrystals. , 2012, ACS nano.

[2]  Han Htoon,et al.  Giant nanocrystal quantum dots: stable down-conversion phosphors that exploit a large stokes shift and efficient shell-to-core energy relaxation. , 2012, Nano letters.

[3]  Sergio Brovelli,et al.  'Giant' CdSe/CdS core/shell nanocrystal quantum dots as efficient electroluminescent materials: strong influence of shell thickness on light-emitting diode performance. , 2012, Nano letters.

[4]  A Paul Alivisatos,et al.  Precursor conversion kinetics and the nucleation of cadmium selenide nanocrystals. , 2010, Journal of the American Chemical Society.

[5]  M. Kovalenko,et al.  Alkyl chains of surface ligands affect polytypism of cdse nanocrystals and play an important role in the synthesis of anisotropic nanoheterostructures. , 2010, Journal of the American Chemical Society.

[6]  K. Ryan,et al.  Directing semiconductor nanorod assembly into 1D or 2D supercrystals by altering the surface charge. , 2010, Chemical communications.

[7]  L. Manna,et al.  Epitaxial CdSe-Au nanocrystal heterostructures by thermal annealing. , 2010, Nano letters.

[8]  K. Char,et al.  Multicolored light-emitting diodes based on all-quantum-dot multilayer films using layer-by-layer assembly method. , 2010, Nano letters.

[9]  Lin-wang Wang,et al.  Electronic structures of the CdSe/CdS core-shell nanorods. , 2010, ACS nano.

[10]  Martin Moskovits,et al.  Photoelectrochemical performance of CdSe nanorod arrays grown on a transparent conducting substrate. , 2009, Nano letters.

[11]  A Paul Alivisatos,et al.  Strain-dependent photoluminescence behavior of CdSe/CdS nanocrystals with spherical, linear, and branched topologies. , 2009, Nano letters.

[12]  P. Kamat,et al.  Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe. , 2009, ACS nano.

[13]  Guglielmo Lanzani,et al.  CdSe/CdS/ZnS double shell nanorods with high photoluminescence efficiency and their exploitation as biolabeling probes. , 2009, Journal of the American Chemical Society.

[14]  Uri Banin,et al.  ZnSe quantum dots within CdS nanorods: a seeded-growth type-II system. , 2008, Small.

[15]  C. S. Sotomayor Torres,et al.  Light-emitting diodes with semiconductor nanocrystals. , 2008, Angewandte Chemie.

[16]  Dmitri V Talapin,et al.  Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. , 2007, Nano letters.

[17]  Uri Banin,et al.  Directed self-assembly of gold-tipped CdSe nanorods. , 2006, Journal of the American Chemical Society.

[18]  Yi Cui,et al.  Electrical transport through a single nanoscale semiconductor branch point. , 2005, Nano letters.

[19]  Ilan Gur,et al.  Hybrid Organic-Nanocrystal Solar Cells , 2005 .

[20]  Andreas Kornowski,et al.  CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core−Shell−Shell Nanocrystals , 2004 .

[21]  P. Mulvaney,et al.  Nucleation and growth kinetics of CdSe nanocrystals in octadecene , 2004 .

[22]  Lin-Wang Wang,et al.  Colloidal nanocrystal heterostructures with linear and branched topology , 2004, Nature.

[23]  Uri Banin,et al.  Selective Growth of Metal Tips onto Semiconductor Quantum Rods and Tetrapods , 2004, Science.

[24]  Liberato Manna,et al.  Controlled growth of tetrapod-branched inorganic nanocrystals , 2003, Nature materials.

[25]  A. P. Alivisatos,et al.  Origin and scaling of the permanent dipole moment in CdSe nanorods. , 2003, Physical review letters.

[26]  A. P. Alivisatos,et al.  Epitaxial growth and photochemical annealing of graded CdS/ZnS shells on colloidal CdSe nanorods. , 2002, Journal of the American Chemical Society.

[27]  Liberato Manna,et al.  Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals , 2000 .

[28]  Weidong Yang,et al.  Shape control of CdSe nanocrystals , 2000, Nature.

[29]  Andrew K. L. Lim,et al.  A single-electron transistor made from a cadmium selenide nanocrystal , 1997, Nature.

[30]  Norris,et al.  Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. , 1996, Physical review. B, Condensed matter.

[31]  Lu,et al.  Zinc-blende-wurtzite polytypism in semiconductors. , 1992, Physical review. B, Condensed matter.

[32]  S. Takeuchi,et al.  Stacking-fault energy of II–VI compounds , 1985 .