RSkNN: kNN Search on Road Networks by Incorporating Social Influence

Although <inline-formula><tex-math notation="LaTeX">$k$</tex-math><alternatives> <inline-graphic xlink:type="simple" xlink:href="chen-ieq1-2518692.gif"/></alternatives></inline-formula>NN search on a road network <inline-formula><tex-math notation="LaTeX">$G_r$</tex-math><alternatives> <inline-graphic xlink:type="simple" xlink:href="chen-ieq2-2518692.gif"/></alternatives></inline-formula>, i.e., finding <inline-formula> <tex-math notation="LaTeX">$k$</tex-math><alternatives><inline-graphic xlink:type="simple" xlink:href="chen-ieq3-2518692.gif"/> </alternatives></inline-formula> nearest objects to a query user <inline-formula><tex-math notation="LaTeX"> $q$</tex-math><alternatives><inline-graphic xlink:type="simple" xlink:href="chen-ieq4-2518692.gif"/></alternatives> </inline-formula> on <inline-formula><tex-math notation="LaTeX">$G_r$</tex-math><alternatives> <inline-graphic xlink:type="simple" xlink:href="chen-ieq5-2518692.gif"/></alternatives></inline-formula>, has been extensively studied, existing works neglected the fact that the <inline-formula><tex-math notation="LaTeX">$q$</tex-math> <alternatives><inline-graphic xlink:type="simple" xlink:href="chen-ieq6-2518692.gif"/></alternatives></inline-formula>'s social information can play an important role in this <inline-formula><tex-math notation="LaTeX">$k$</tex-math> <alternatives><inline-graphic xlink:type="simple" xlink:href="chen-ieq7-2518692.gif"/></alternatives></inline-formula>NN query. Many real-world applications, such as location-based social networking services, require such a query. In this paper, we study a new problem: <inline-formula><tex-math notation="LaTeX">$k$</tex-math><alternatives> <inline-graphic xlink:type="simple" xlink:href="chen-ieq8-2518692.gif"/></alternatives></inline-formula>NN search on road networks by incorporating social influence (RS<italic>k</italic>NN). Specifically, the state-of-the-art <italic>Independent Cascade</italic> (IC) model in social network is applied to define social influence. One critical challenge of the problem is to speed up the computation of the social influence over large road and social networks. To address this challenge, we propose three efficient index-based search algorithms, i.e., road network-based (RN-based), social network-based (SN-based), and hybrid indexing algorithms. In the RN-based algorithm, we employ a filtering-and-verification framework for tackling the hard problem of computing social influence. In the SN-based algorithm, we embed social cuts into the index, so that we speed up the query. In the hybrid algorithm, we propose an index, summarizing the road and social networks, based on which we can obtain query answers efficiently. Finally, we use real road and social network data to empirically verify the efficiency and efficacy of our solutions.

[1]  Éva Tardos,et al.  Maximizing the Spread of Influence through a Social Network , 2015, Theory Comput..

[2]  Kian-Lee Tan,et al.  Efficient location-aware influence maximization , 2014, SIGMOD Conference.

[3]  Zhu Wang,et al.  A sentiment-enhanced personalized location recommendation system , 2013, HT.

[4]  Wei Chen,et al.  Scalable influence maximization for prevalent viral marketing in large-scale social networks , 2010, KDD.

[5]  Leslie G. Valiant,et al.  Fast probabilistic algorithms for hamiltonian circuits and matchings , 1977, STOC '77.

[6]  Vipin Kumar,et al.  Analysis of Multilevel Graph Partitioning , 1995, Proceedings of the IEEE/ACM SC95 Conference.

[7]  Kian-Lee Tan,et al.  G-tree: an efficient index for KNN search on road networks , 2013, CIKM.

[8]  Jianliang Xu,et al.  Spatial-aware interest group queries in location-based social networks , 2012, Data Knowl. Eng..

[9]  Yifei Yuan,et al.  Scalable Influence Maximization in Social Networks under the Linear Threshold Model , 2010, 2010 IEEE International Conference on Data Mining.

[10]  Dorit S. Hochba,et al.  Approximation Algorithms for NP-Hard Problems , 1997, SIGA.

[11]  Mechthild Stoer,et al.  A simple min-cut algorithm , 1997, JACM.

[12]  Stavros Papadopoulos,et al.  A General Framework for Geo-Social Query Processing , 2013, Proc. VLDB Endow..

[13]  Jianliang Xu,et al.  Spatial-aware interest group queries in location-based social networks , 2014, Data Knowl. Eng..

[14]  Rui Zhang,et al.  K-Nearest Neighbor Temporal Aggregate Queries , 2015, EDBT.

[15]  Masahiro Kimura,et al.  Tractable Models for Information Diffusion in Social Networks , 2006, PKDD.

[16]  Weiwei Sun,et al.  Circle of Friend Query in Geo-Social Networks , 2012, DASFAA.

[17]  Kyriakos Mouratidis,et al.  Joint Search by Social and Spatial Proximity , 2015, IEEE Transactions on Knowledge and Data Engineering.

[18]  Dorit S. Hochbaum,et al.  Approximation Algorithms for NP-Hard Problems , 1996 .

[19]  M. Narasimha Murty,et al.  Genetic K-means algorithm , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[20]  Ravindra K. Ahuja,et al.  Network Flows , 2011 .

[21]  Xiaokui Xiao,et al.  Influence maximization: near-optimal time complexity meets practical efficiency , 2014, SIGMOD Conference.

[22]  James R. Lee,et al.  Improved approximation algorithms for minimum-weight vertex separators , 2005, STOC '05.

[23]  Chih-Ya Shen,et al.  On socio-spatial group query for location-based social networks , 2012, KDD.

[24]  Kathryn Fraughnaugh,et al.  Introduction to graph theory , 1973, Mathematical Gazette.

[25]  Hanan Samet,et al.  Scalable network distance browsing in spatial databases , 2008, SIGMOD Conference.

[26]  Andreas Krause,et al.  Cost-effective outbreak detection in networks , 2007, KDD '07.

[27]  Mikkel Thorup,et al.  Near-optimal fully-dynamic graph connectivity , 2000, STOC '00.