Diffusion Monte Carlo Study of Para-Diiodobenzene Polymorphism Revisited.

We revisit our investigation of the diffusion Monte Carlo (DMC) simulation of para-diiodobenzene (p-DIB) molecular crystal polymorphism. [See J. Phys. Chem. Lett. 2010, 1, 1789-1794.] We perform, for the first time, a rigorous study of finite-size effects and choice of nodal surface on the prediction of polymorph stability in molecular crystals using fixed-node DMC. Our calculations are the largest that are currently feasible using the resources of the K-computer and provide insights into the formidable challenge of predicting such properties from first principles. In particular, we show that finite-size effects can influence the trial nodal surface of a small (1 × 1 × 1) simulation cell considerably. Therefore, we repeated our DMC simulations with a 1 × 3 × 3 simulation cell, which is the largest such calculation to date. We used a density functional theory (DFT) nodal surface generated with the PBE functional, and we accumulated statistical samples with ∼6.4 × 10(5) core hours for each polymorph. Our final results predict a polymorph stability that is consistent with experiment, but they also indicate that the results in our previous paper were somewhat fortuitous. We analyze the finite-size errors using model periodic Coulomb (MPC) interactions and kinetic energy corrections, according to the CCMH scheme of Chiesa, Ceperley, Martin, and Holzmann. We investigate the dependence of the finite-size errors on different aspect ratios of the simulation cell (k-mesh convergence) in order to understand how to choose an appropriate ratio for the DMC calculations. Even in the most expensive simulations currently possible, we show that the finite size errors in the DMC total energies are much larger than the energy difference between the two polymorphs, although error cancellation means that the polymorph prediction is accurate. Finally, we found that the T-move scheme is essential for these massive DMC simulations in order to circumvent population explosions and large time-step biases.

[1]  J. Toulouse,et al.  Double-hybrid density-functional theory applied to molecular crystals. , 2014, The Journal of chemical physics.

[2]  S. Hirata,et al.  Ab initio molecular crystal structures, spectra, and phase diagrams. , 2014, Accounts of chemical research.

[3]  D. Presti,et al.  Oxalyl dihydrazide polymorphism: a periodic dispersion-corrected DFT and MP2 investigation , 2014 .

[4]  L. Shulenburger,et al.  Quantum Monte Carlo applied to solids , 2013, 1310.1047.

[5]  L. Mitas,et al.  Quantum Monte Carlo Methods Describe Noncovalent Interactions with Subchemical Accuracy. , 2013, Journal of chemical theory and computation.

[6]  W. Foulkes,et al.  Quantum Monte Carlo study of high pressure solid molecular hydrogen , 2013, 1307.1463.

[7]  S. Grimme,et al.  Dispersion-corrected density functional theory for aromatic interactions in complex systems. , 2013, Accounts of chemical research.

[8]  Alexandre Tkatchenko,et al.  Seamless and Accurate Modeling of Organic Molecular Materials. , 2013, The journal of physical chemistry letters.

[9]  S. Krishnan,et al.  Dynamic load balancing for petascale quantum Monte Carlo applications: The Alias method , 2013, Comput. Phys. Commun..

[10]  K. Hongo,et al.  The Importance of Electron Correlation on Stacking Interaction of Adenine-Thymine Base-Pair Step in B-DNA: A Quantum Monte Carlo Study. , 2013, Journal of chemical theory and computation.

[11]  L. Mitas,et al.  Quantum Monte Carlo Study of π-Bonded Transition Metal Organometallics: Neutral and Cationic Vanadium-Benzene and Cobalt-Benzene Half Sandwiches. , 2013, Journal of chemical theory and computation.

[12]  J. Sancho‐García,et al.  Reliable DFT-based estimates of cohesive energies of organic solids: the anthracene crystal. , 2012, The Journal of chemical physics.

[13]  Gregory J O Beran,et al.  Prediction of organic molecular crystal geometries from MP2-level fragment quantum mechanical/molecular mechanical calculations. , 2012, The Journal of chemical physics.

[14]  P. J. Bygrave,et al.  The embedded many-body expansion for energetics of molecular crystals. , 2012, The Journal of chemical physics.

[15]  J. Grossman,et al.  Point-defect optical transitions and thermal ionization energies from quantum Monte Carlo methods: Application to the F-center defect in MgO , 2012, 1210.0940.

[16]  R. Maezono,et al.  Quantum Monte Carlo study of pressure-induced B3-B1 phase transition in GaAs , 2012 .

[17]  A. Otero-de-la-Roza,et al.  A benchmark for non-covalent interactions in solids. , 2012, The Journal of chemical physics.

[18]  G. Beran,et al.  Crystal Polymorphism in Oxalyl Dihydrazide: Is Empirical DFT-D Accurate Enough? , 2012, Journal of chemical theory and computation.

[19]  D. Presti,et al.  On the ability of periodic dispersion-corrected DFT calculations to predict molecular crystal polymorphism in para-diiodobenzene , 2012 .

[20]  A. Tkatchenko,et al.  Accurate and efficient method for many-body van der Waals interactions. , 2012, Physical review letters.

[21]  Gregory J O Beran,et al.  Practical quantum mechanics-based fragment methods for predicting molecular crystal properties. , 2012, Physical chemistry chemical physics : PCCP.

[22]  P. J. Bygrave,et al.  Improving density functional theory for crystal polymorph energetics. , 2012, Physical chemistry chemical physics : PCCP.

[23]  P. Kent,et al.  Diffusion quantum Monte Carlo study of the equation of state and point defects in aluminum , 2012, 1210.5489.

[24]  Ryo Maezono,et al.  GPGPU for orbital function evaluation with a new updating scheme , 2012, J. Comput. Chem..

[25]  G. Beran,et al.  Accidental Degeneracy in Crystalline Aspirin: New Insights from High-Level ab Initio Calculations , 2012 .

[26]  Krzysztof Szalewicz,et al.  Symmetry‐adapted perturbation theory of intermolecular forces , 2012 .

[27]  A. Tkatchenko,et al.  Many-body dispersion interactions in molecular crystal polymorphism. , 2012, Angewandte Chemie.

[28]  Weitao Yang,et al.  Challenges for density functional theory. , 2012, Chemical reviews.

[29]  W. Lester,et al.  Quantum Monte Carlo and related approaches. , 2012, Chemical reviews.

[30]  Donald G. Truhlar,et al.  Improving the Accuracy of Hybrid Meta-GGA Density Functionals by Range Separation , 2011 .

[31]  G. Beran,et al.  Accurate Molecular Crystal Lattice Energies from a Fragment QM/MM Approach with On-the-Fly Ab Initio Force Field Parametrization. , 2011, Journal of chemical theory and computation.

[32]  Tosio Kato,et al.  On the Eigenfunctions of Many-Particle Systems in Quantum Mechanics , 2011 .

[33]  B. Rice,et al.  A molecular dynamics study of 1,1-diamino-2,2-dinitroethylene (FOX-7) crystal using a symmetry adapted perturbation theory-based intermolecular force field. , 2011, Physical chemistry chemical physics : PCCP.

[34]  Heiko Jacobsen,et al.  A Failure of DFT Is Not Necessarily a DFT Failure-Performance Dependencies on Model System Choices. , 2011, Journal of chemical theory and computation.

[35]  A. Tkatchenko,et al.  Hydrogen bonds and van der waals forces in ice at ambient and high pressures. , 2011, Physical review letters.

[36]  M. Habgood,et al.  Testing a Variety of Electronic-Structure-Based Methods for the Relative Energies of 5-Formyluracil Crystals. , 2011, Journal of chemical theory and computation.

[37]  S. Grimme Density functional theory with London dispersion corrections , 2011 .

[38]  G. Beran,et al.  Predicting Organic Crystal Lattice Energies with Chemical Accuracy , 2010 .

[39]  Ryo Maezono,et al.  Acceleration of a QM/MM‐QMC simulation using GPU , 2010, J. Comput. Chem..

[40]  L. Mitas,et al.  Applications of quantum Monte Carlo methods in condensed systems , 2010, 1010.4992.

[41]  S. Hirata Bridging quantum chemistry and solid-state physics , 2010 .

[42]  S. Grimme,et al.  Importance of London dispersion effects for the packing of molecular crystals: a case study for intramolecular stacking in a bis-thiophene derivative. , 2010, Physical chemistry chemical physics : PCCP.

[43]  T. Iitaka,et al.  Failure of Conventional Density Functionals for the Prediction of Molecular Crystal Polymorphism: A Quantum Monte Carlo Study , 2010, The Journal of Physical Chemistry Letters.

[44]  R. Needs,et al.  Continuum variational and diffusion quantum Monte Carlo calculations , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[45]  Stefan Goedecker,et al.  ABINIT: First-principles approach to material and nanosystem properties , 2009, Comput. Phys. Commun..

[46]  M. Neumann,et al.  Can crystal structure prediction guide experimentalists to a new polymorph of paracetamol , 2009 .

[47]  R J Needs,et al.  Norm-conserving Hartree-Fock pseudopotentials and their asymptotic behavior. , 2009, The Journal of chemical physics.

[48]  S. Hirata Quantum chemistry of macromolecules and solids. , 2009, Physical chemistry chemical physics : PCCP.

[49]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[50]  A. Tkatchenko,et al.  Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. , 2009, Physical review letters.

[51]  S. Woodley,et al.  Crystal structure prediction from first principles. , 2008, Nature materials.

[52]  B. Rice,et al.  Predicting structure of molecular crystals from first principles. , 2008, Physical review letters.

[53]  Alexandre Tkatchenko,et al.  Popular Kohn-Sham density functionals strongly overestimate many-body interactions in van der Waals systems , 2008 .

[54]  S. Price,et al.  Computational prediction of organic crystal structures and polymorphism , 2008 .

[55]  A. Sorouri,et al.  Finite-size errors in continuum quantum Monte Carlo calculations , 2008, 0806.0957.

[56]  Robert J. Harrison,et al.  FPGA acceleration of a quantum Monte Carlo application , 2008, Parallel Comput..

[57]  F. Leusen,et al.  A major advance in crystal structure prediction. , 2008, Angewandte Chemie.

[58]  Stefan Grimme,et al.  Toward the exact solution of the electronic Schrödinger equation for noncovalent molecular interactions: worldwide distributed quantum monte carlo calculations. , 2008, The journal of physical chemistry. A.

[59]  Shiwei Zhang,et al.  Finite-size correction in many-body electronic structure calculations. , 2007, Physical review letters.

[60]  S. M. Rothstein,et al.  Advances in quantum Monte Carlo , 2006 .

[61]  M. Casula Beyond the locality approximation in the standard diffusion Monte Carlo method , 2006, cond-mat/0610246.

[62]  R. Martin,et al.  Finite-size error in many-body simulations with long-range interactions. , 2006, Physical review letters.

[63]  Yan Zhao,et al.  Exchange-correlation functional with broad accuracy for metallic and nonmetallic compounds, kinetics, and noncovalent interactions. , 2005, The Journal of chemical physics.

[64]  R. Needs,et al.  Variance-minimization scheme for optimizing Jastrow factors , 2005, physics/0505072.

[65]  R. Needs,et al.  Smooth relativistic Hartree-Fock pseudopotentials for H to Ba and Lu to Hg. , 2005, The Journal of chemical physics.

[66]  Xavier Gonze,et al.  A brief introduction to the ABINIT software package , 2005 .

[67]  C. Cavazzoni,et al.  High-pressure dissociation of crystalline para-diiodobenzene: optical experiments and Car-Parrinello calculations. , 2005, Journal of the American Chemical Society.

[68]  C. Umrigar,et al.  Energy and variance optimization of many-body wave functions. , 2004, Physical review letters.

[69]  R. Needs,et al.  Jastrow correlation factor for atoms, molecules, and solids , 2004, 0801.0378.

[70]  N. Handy,et al.  A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP) , 2004 .

[71]  M. Gillan,et al.  Efficient localized basis set for quantum Monte Carlo calculations on condensed matter , 2004, cond-mat/0407037.

[72]  S. Price The computational prediction of pharmaceutical crystal structures and polymorphism. , 2004, Advanced drug delivery reviews.

[73]  M. Dion,et al.  van der Waals density functional for general geometries. , 2004, Physical review letters.

[74]  Joel Bernstein,et al.  Polymorphism in Molecular Crystals , 2002 .

[75]  J. Grossman Benchmark quantum Monte Carlo calculations , 2002 .

[76]  F. Allen,et al.  Cambridge Structural Database , 2002 .

[77]  M. Zaworotko,et al.  From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. , 2001, Chemical reviews.

[78]  D. Ceperley,et al.  Twist-averaged boundary conditions in continuum quantum Monte Carlo algorithms. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[79]  Trygve Helgaker,et al.  Molecular Electronic-Structure Theory: Helgaker/Molecular Electronic-Structure Theory , 2000 .

[80]  Yan Wang,et al.  Elimination of Coulomb finite-size effects in quantum many-body simulations , 1997 .

[81]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[82]  S. Fahy Quantum Monte Carlo Methods , 1996 .

[83]  Foulkes,et al.  Finite-size effects and Coulomb interactions in quantum Monte Carlo calculations for homogeneous systems with periodic boundary conditions. , 1996, Physical review. B, Condensed matter.

[84]  Foulkes,et al.  Variational and diffusion quantum Monte Carlo calculations at nonzero wave vectors: Theory and application to diamond-structure germanium. , 1995, Physical review. B, Condensed matter.

[85]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[86]  Foulkes,et al.  Quantum Monte Carlo calculations for solids using special k points methods. , 1994, Physical review letters.

[87]  K. Harris,et al.  Temperature-dependent structural properties of p-diiodobenzene : neutron diffraction and high-resolution solid state 13C NMR investigations , 1994 .

[88]  C. Umrigar,et al.  A diffusion Monte Carlo algorithm with very small time-step errors , 1993 .

[89]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[90]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[91]  D. Ceperley,et al.  Nonlocal pseudopotentials and diffusion Monte Carlo , 1991 .

[92]  Lynn W. Jelinski,et al.  Nuclear magnetic resonance spectroscopy. , 1990, Analytical chemistry.

[93]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[94]  David M. Ceperley,et al.  Fixed-node quantum Monte Carlo for molecules , 1982 .

[95]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[96]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[97]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[98]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[99]  R. Jastrow Many-Body Problem with Strong Forces , 1955 .

[100]  T. Iitaka,et al.  A Benchmark Quantum Monte Carlo Study of Molecular Crystal Polymorphism: A Challenging Case for Density-Functional Theory , 2012 .

[101]  Akila Gothandaraman,et al.  Comparing Hardware Accelerators in Scientific Applications: A Case Study , 2011, IEEE Transactions on Parallel and Distributed Systems.

[102]  D. Alfé,et al.  Petascale computing opens new vistas for quantum Monte , 2011 .

[103]  So Hirata,et al.  Coupled-cluster and many-body perturbation study of energies, structures, and phonon dispersions of solid hydrogen fluoride† , 2009 .

[104]  M. Schütz,et al.  Density-functional theory-symmetry-adapted intermolecular perturbation theory with density fitting: a new efficient method to study intermolecular interaction energies. , 2005, The Journal of chemical physics.

[105]  Masayuki Hasegawa,et al.  Semiempirical approach to the energetics of interlayer binding in graphite , 2004 .

[106]  M. Ratner Molecular electronic-structure theory , 2000 .

[107]  C. J. Umrigar,et al.  A diffusion Monte Carlo algorithm with very small timestep errors , 1999 .

[108]  K. Harris,et al.  Dynamic properties of p-diiodobenzene investigated by solid-state 2H and 13C nuclear magnetic resonance spectroscopy , 1993 .

[109]  C. Brooks Computer simulation of liquids , 1989 .

[110]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .