BARNET: Towards Activity Recognition Using Passive Backscattering Tag-to-Tag Network

We present the vision of BARNET (Backscattering Activity Recognition NEtwork of Tags), a network of passive RF tags that use RF backscatter for tag-to-tag communication. BARNET not only provides identification of tagged objects but also can serve as a 'device-free' activity recognition system. BARNET's key innovation is the concept of backscatter channel state information (BCSI) which can be measured via systematic multiphase probing of the backscatter tag-to-tag channel using innovative processing on the passive tags. So far such measurements were only possible using active radio receivers that consume much higher power. Changes in BCSI provide signatures for different activities in the environment that can be learned using suitable machine learning tools. We develop the BARNET tag architecture which shows that an ASIC implementation can run on harvested RF power. We develop a printed circuit board (PCB) prototype using discrete components to evaluate activity recognition performance. We show that the prototype can recognize human daily activities with an average error around 6%. Overall, BARNET uses passive tags to achieve the same level of performance as systems that use powered, active radios.

[1]  Daniel M. Dobkin,et al.  The RF in RFID: Passive UHF RFID in Practice , 2007 .

[2]  Angli Liu,et al.  Turbocharging ambient backscatter communication , 2014, SIGCOMM.

[3]  Raúl Parada,et al.  Measuring user-object interactions in IoT spaces , 2015, 2015 IEEE International Conference on RFID Technology and Applications (RFID-TA).

[4]  Khaled A. Harras,et al.  WiGest: A ubiquitous WiFi-based gesture recognition system , 2014, 2015 IEEE Conference on Computer Communications (INFOCOM).

[5]  Xiaoli Li,et al.  Deep Convolutional Neural Networks on Multichannel Time Series for Human Activity Recognition , 2015, IJCAI.

[6]  Alanson P. Sample,et al.  IDSense: A Human Object Interaction Detection System Based on Passive UHF RFID , 2015, CHI.

[7]  Yvonne Schuhmacher,et al.  Rfid Handbook Fundamentals And Applications In Contactless Smart Cards And Identification , 2016 .

[8]  Stefano Caizzone,et al.  Electromagnetic Models for Passive Tag-to-Tag Communications , 2012, IEEE Transactions on Antennas and Propagation.

[9]  Wei Wang,et al.  Understanding and Modeling of WiFi Signal Based Human Activity Recognition , 2015, MobiCom.

[10]  G. Iannaccone,et al.  Design criteria for the RF section of UHF and microwave passive RFID transponders , 2005, IEEE Transactions on Microwave Theory and Techniques.

[11]  Petar M. Djuric,et al.  Design of a backscatter-based Tag-to-Tag system , 2017, 2017 IEEE International Conference on RFID (RFID).

[12]  Jens Sauerbrey,et al.  A 0.5-V 1-μW successive approximation ADC , 2003, IEEE J. Solid State Circuits.

[13]  Aggelos Bletsas,et al.  Improving Backscatter Radio Tag Efficiency , 2010, IEEE Transactions on Microwave Theory and Techniques.

[14]  Shwetak N. Patel,et al.  Whole-home gesture recognition using wireless signals , 2013, MobiCom.

[15]  S. Ramamurthy,et al.  Passive tag-to-tag communication , 2012, 2012 IEEE International Conference on RFID (RFID).

[16]  Khaled A. Harras,et al.  WiGest demo: A ubiquitous WiFi-based gesture recognition system , 2015, 2015 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).

[17]  Hao-Chiao Hong,et al.  A 65-fJ/Conversion-Step 0.9-V 200-kS/s Rail-to-Rail 8-bit Successive Approximation ADC , 2007, IEEE Journal of Solid-State Circuits.

[18]  David Blaauw,et al.  A cubic-millimeter energy-autonomous wireless intraocular pressure monitor , 2011, 2011 IEEE International Solid-State Circuits Conference.

[19]  G.D. Durgin,et al.  Complete Link Budgets for Backscatter-Radio and RFID Systems , 2009, IEEE Antennas and Propagation Magazine.

[20]  Shyamnath Gollakota,et al.  Bringing Gesture Recognition to All Devices , 2014, NSDI.

[21]  Joshua R. Smith,et al.  WISPCam: A battery-free RFID camera , 2015, 2015 IEEE International Conference on RFID (RFID).

[22]  Colby Boyer,et al.  Space Time Coding for Backscatter RFID , 2013, IEEE Transactions on Wireless Communications.

[23]  S. Haykin,et al.  Modern Wireless Communications , 1939, Nature.

[24]  David Wetherall,et al.  Ambient backscatter: wireless communication out of thin air , 2013, SIGCOMM.

[25]  Huan-Yang Chen,et al.  Vector Backscattered Signals Improve Piggyback Modulation for Sensing With Passive UHF RFID Tags , 2011, IEEE Transactions on Microwave Theory and Techniques.

[26]  André B. J. Kokkeler,et al.  Exploiting phase measurements of EPC Gen2 RFID tags , 2013, 2013 IEEE International Conference on RFID-Technologies and Applications (RFID-TA).

[27]  Wouter A. Serdijn,et al.  Co-Design of a CMOS Rectifier and Small Loop Antenna for Highly Sensitive RF Energy Harvesters , 2014, IEEE Journal of Solid-State Circuits.

[28]  Joshua R. Smith,et al.  Wi-fi backscatter , 2014, SIGCOMM 2015.

[29]  Gerhard Tröster,et al.  The telepathic phone: Frictionless activity recognition from WiFi-RSSI , 2014, 2014 IEEE International Conference on Pervasive Computing and Communications (PerCom).

[30]  Colby Boyer,et al.  — Invited Paper — Backscatter Communication and RFID: Coding, Energy, and MIMO Analysis , 2014, IEEE Transactions on Communications.

[31]  Xiaoxia Huang,et al.  Indoor Device-Free Activity Recognition Based on Radio Signal , 2017, IEEE Transactions on Vehicular Technology.

[32]  Narayanan Vijaykrishnan,et al.  Dynamic Power and Energy Management for Energy Harvesting Nonvolatile Processor Systems , 2017, ACM Trans. Embed. Comput. Syst..

[33]  Taejoong Song,et al.  Bitline Charge-Recycling SRAM Write Assist Circuitry for $V_{\mathrm{MIN}}$ Improvement and Energy Saving , 2019, IEEE Journal of Solid-State Circuits.

[34]  Fadel Adib,et al.  Multi-Person Localization via RF Body Reflections , 2015, NSDI.

[35]  Samir R. Das,et al.  Design and Evaluation of “BTTN”: A Backscattering Tag-to-Tag Network , 2018, IEEE Internet of Things Journal.

[36]  Yang Xiao,et al.  IEEE 802.11n: enhancements for higher throughput in wireless LANs , 2005, IEEE Wireless Communications.

[37]  David Blaauw,et al.  Always-On 12-nW Acoustic Sensing and Object Recognition Microsystem for Unattended Ground Sensor Nodes , 2018, IEEE Journal of Solid-State Circuits.

[38]  Jie Yang,et al.  E-eyes: device-free location-oriented activity identification using fine-grained WiFi signatures , 2014, MobiCom.

[39]  David Wetherall,et al.  Predictable 802.11 packet delivery from wireless channel measurements , 2010, SIGCOMM '10.

[40]  Jie Wang,et al.  CSI-Based Device-Free Wireless Localization and Activity Recognition Using Radio Image Features , 2017, IEEE Transactions on Vehicular Technology.

[41]  Xiao Zhang,et al.  Device-Free Wireless Localization and Activity Recognition: A Deep Learning Approach , 2017, IEEE Transactions on Vehicular Technology.

[42]  J. Teizer,et al.  Quadrature Amplitude Modulated Backscatter in Passive and Semipassive UHF RFID Systems , 2012, IEEE Transactions on Microwave Theory and Techniques.

[43]  Petar M. Djuric,et al.  Phase Cancellation in Backscatter-Based Tag-to-Tag Communication Systems , 2016, IEEE Internet of Things Journal.

[44]  P. D. Mitcheson,et al.  Ambient RF Energy Harvesting in Urban and Semi-Urban Environments , 2013, IEEE Transactions on Microwave Theory and Techniques.

[45]  Sang-Chul Kim,et al.  Device-free activity recognition using CSI & big data analysis: A survey , 2017, 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN).

[46]  Sachin Katti,et al.  BackFi: High Throughput WiFi Backscatter , 2015, SIGCOMM.

[47]  Bernt Schiele,et al.  A tutorial on human activity recognition using body-worn inertial sensors , 2014, CSUR.

[48]  Shahrokh Valaee,et al.  A Survey of Human Activity Recognition Using WiFi CSI , 2017, ArXiv.