Residual respiratory impairment after COVID-19 pneumonia

A. Gasbarrini | L. Richeldi | G. Sgalla | G. Paludetti | J. Galli | A. Cingolani | P. Cattani | Y. Longobardi | R. Bernabei | G. Addolorato | L. Natale | D. Buonsenso | D. Pata | M. Tosato | A. Picca | R. Calvani | E. Marzetti | P. Valentini | Chiara Pierandrei | C. De Rose | A. Borghetti | E. Tamburrini | F. Franceschi | F. Lombardi | A. Calabrese | L. Santoro | R. Marano | S. Rizzo | R. Murri | M. Modica | F. Benvenuto | E. Gremese | D. Janiri | G. Giuseppin | G. Mingrone | M. Fantoni | G. Savera | F. Landi | L. Petricca | D. Moschese | S. Di Gianbenedetto | A. Santoliquido | F. Varone | B. Iovene | G. Gambini | A. Carfì | A. Ciccullo | G. Bramato | L. Catalano | F. Ciciarello | L. Gigante | G. Natalello | A. Nesci | F. Pagano | V. Popolla | S. Rocchi | E. Rota | A. Salerno | L. Stella | E. Taddei | M. Tritto | G. Ventura | Maria Cristina Savastano | S. Marchetti | M. Molinaro | A. Lauria | Marialessia Lerede | L. Tricarico | C. Culiersi | A. Paglionico | Francesco Elisa Roberto Massimo Antonio Carlo Francesca Giul Landi Gremese Bernabei Fantoni Gasbarri | Carlo Romano Settanni | Maria Rita Lo Monaco | Anna Maria Martone | C. Napolitano | Maria Assunta Zocco | Mauirizio Sanguinetti | Alessandro Bizzarro | Maria Grazia Cozzupoli | Giulio Cesare Passali | F. Crudo | G. Di Cintio | M. Santantonio | Davide Sinatti | Aangelo Calabrese | Gabriele Sani | Anna Rita Larici | Anna Laura. Fedele | Marco Maria Lizzio | G. Sani | Aangelo Calabrese | G. Cesare Passali | A. Calabrese | D. Sinatti | D. Buonsenso | Francesco Lombardi | Luca Richeldi | Aangelo Calabrese | M. Sanguinetti | Aangelo Calabrese

[1]  M. Tobin,et al.  PaO2/FIO2 ratio: the mismeasure of oxygenation in COVID-19 , 2021, European Respiratory Journal.

[2]  S. Pini,et al.  Trends over Time of Lung Function and Radiological Abnormalities in COVID-19 Pneumonia: A Prospective, Observational, Cohort Study , 2021, Journal of clinical medicine.

[3]  V. Brusasco,et al.  Lung diffusing capacity for nitric oxide and carbon monoxide following mild‐to‐severe COVID‐19 , 2021, Physiological reports.

[4]  C. Ryerson,et al.  Patient-reported outcome measures after COVID-19: a prospective cohort study , 2020, European Respiratory Journal.

[5]  Jennifer L. Bell,et al.  Effect of Dexamethasone in Hospitalized Patients with COVID-19: Preliminary Report , 2020, medRxiv.

[6]  A. Gasbarrini,et al.  Post-COVID-19 global health strategies: the need for an interdisciplinary approach , 2020, Aging Clinical and Experimental Research.

[7]  H. Shan,et al.  Impact of coronavirus disease 2019 on pulmonary function in early convalescence phase , 2020, Respiratory Research.

[8]  Xiao-Neng Mo,et al.  Abnormal pulmonary function in COVID-19 patients at time of hospital discharge , 2020, European Respiratory Journal.

[9]  L. Camporota,et al.  COVID-19 pneumonia: different respiratory treatments for different phenotypes? , 2020, Intensive Care Medicine.

[10]  B. Zwissler,et al.  Coronavirus disease 2019 , 2020, Der Anaesthesist.

[11]  Sarah E. Alexander,et al.  The effect of acute sleep deprivation on skeletal muscle protein synthesis and the hormonal environment , 2020, bioRxiv.

[12]  M. Pal,et al.  Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2): An Update , 2020, Cureus.

[13]  K. Yuen,et al.  Clinical Characteristics of Coronavirus Disease 2019 in China , 2020, The New England journal of medicine.

[14]  Heshui Shi,et al.  Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study , 2020, The Lancet Infectious Diseases.

[15]  Long Jiang Zhang,et al.  Coronavirus Disease 2019 (COVID-19): A Perspective from China , 2020, Radiology.

[16]  C. Akdis,et al.  Clinical characteristics of 140 patients infected with SARS‐CoV‐2 in Wuhan, China , 2020, Allergy.

[17]  Hsiu-Ying Cho,et al.  Recovery of pulmonary functions, exercise capacity, and quality of life after pulmonary rehabilitation in survivors of ARDS due to severe influenza A (H1N1) pneumonitis , 2018, Influenza and other respiratory viruses.

[18]  P. Calverley,et al.  American Thoracic Society Documents An Official American Thoracic Society Statement : Update on the Mechanisms , Assessment , and Management of Dyspnea , 2012 .

[19]  Arthur S Slutsky,et al.  Acute Respiratory Distress Syndrome The Berlin Definition , 2012 .

[20]  C. Gomersall,et al.  Long-term outcome of acute respiratory distress syndrome caused by severe acute respiratory syndrome (SARS): an observational study. , 2006, Critical care and resuscitation : journal of the Australasian Academy of Critical Care Medicine.

[21]  J. Hankinson,et al.  Standardisation of the single-breath determination of carbon monoxide uptake in the lung , 2005, European Respiratory Journal.

[22]  J. Hankinson,et al.  Standardisation of spirometry , 2005, European Respiratory Journal.

[23]  J. Sung,et al.  Impact of severe acute respiratory syndrome (SARS) on pulmonary function, functional capacity and quality of life in a cohort of survivors , 2005, Thorax.

[24]  Liang’an Chen,et al.  Dynamic changes of serum SARS-Coronavirus IgG, pulmonary function and radiography in patients recovering from SARS after hospital discharge , 2005 .

[25]  Johannes Gerdes,et al.  Human lung cancer cells express functionally active Toll-like receptor 9 , 2005, Respiratory research.

[26]  Arthur S Slutsky,et al.  One-year outcomes in survivors of the acute respiratory distress syndrome. , 2003, The New England journal of medicine.

[27]  A. Gift,et al.  Validity of the numeric rating scale as a measure of dyspnea. , 1998, American journal of critical care : an official publication, American Association of Critical-Care Nurses.

[28]  J. Henzen Publisher's note , 1979, Brain Research.