Omega results for cubic field counts via lower-order terms in the one-level density
暂无分享,去创建一个
[1] Daniel Fiorilli,et al. Low-lying zeros in families of holomorphic cusp forms: the weight aspect , 2019, 1911.08310.
[2] David P. Roberts. Density of cubic field discriminants , 2001, Math. Comput..
[3] Daniel Fiorilli,et al. Low-lying zeros of elliptic curve L-functions: Beyond the Ratios Conjecture , 2014, Mathematical Proceedings of the Cambridge Philosophical Society.
[4] Daniel Fiorilli,et al. Low-lying zeros of quadratic Dirichlet $L$ -functions: lower order terms for extended support , 2016, Compositio Mathematica.
[5] P. Sarnak,et al. Families of L -Functions and Their Symmetry , 2014, 1401.5507.
[6] A. Yang. Distribution problems associated to zeta functions and invariant theory , 2009 .
[7] Karim Belabas,et al. A fast algorithm to compute cubic fields , 1997, Math. Comput..
[8] Steven J. Miller,et al. A unitary test of the Ratios Conjecture , 2009, 0909.4916.
[9] P. Sarnak,et al. Zeroes of zeta functions and symmetry , 1999 .
[10] Steven J. Miller. One- and two-level densities for rational families of elliptic curves: evidence for the underlying group symmetries , 2004, Compositio Mathematica.
[11] N. Snaith,et al. Applications of the L‐functions ratios conjectures , 2005, math/0509480.
[12] An orthogonal test of the L‐functions Ratios conjecture , 2008, 0805.4208.
[13] H. Iwaniec,et al. Analytic Number Theory , 2004 .
[14] Peter Sarnak,et al. Low lying zeros of families of L-functions , 1999, math/9901141.
[15] Linear statistics of low-lying zeros of L-functions , 2002, math/0208230.
[16] Andreas Weber,et al. A Database for Number Fields , 1996, DISCO.
[17] Peter Sarnak,et al. Zeros of principal $L$-functions and random matrix theory , 1996 .
[18] C. Pomerance,et al. Error estimates for the Davenport-Heilbronn theorems , 2010 .
[19] H. Iwaniec,et al. Low-lying zeros of dihedral L-functions , 2003 .
[20] H. Davenport. Multiplicative Number Theory , 1967 .
[21] Takashi Taniguchi,et al. Secondary terms in counting functions for cubic fields , 2011, 1102.2914.
[22] Jacob Tsimerman,et al. On the Davenport–Heilbronn theorems and second order terms , 2010, 1005.0672.
[23] Nicolas Templier,et al. SATO–TATE EQUIDISTRIBUTION OF CERTAIN FAMILIES OF ARTIN $L$ -FUNCTIONS , 2015, Forum of Mathematics, Sigma.
[24] Henry H. Kim,et al. Low lying zeros of Artin $$L$$L-functions , 2014 .
[25] Nicholas M. Katz,et al. Random matrices, Frobenius eigenvalues, and monodromy , 1998 .
[26] Michael O. Rubinstein,et al. Low-lying zeros of L-functions and random matrix theory , 2001 .
[27] Steven J. Miller,et al. Surpassing the ratios conjecture in the 1-level density of Dirichlet L-functions , 2011, 1111.3896.
[28] Henry H. Kim,et al. n-Level Densities of Artin L-Functions , 2015 .
[29] H. Iwaniec,et al. The subconvexity problem for Artin L–functions , 2002 .
[30] Nicolas Templier,et al. Sato–Tate theorem for families and low-lying zeros of automorphic $$L$$L-functions , 2012, 1208.1945.
[31] Daniel Fiorilli,et al. Low-lying zeros of quadratic Dirichlet $L$-functions: A transition in the Ratios Conjecture , 2017, 1710.06834.
[32] Steven J. Miller,et al. A Symplectic Test of the L-Functions Ratios Conjecture , 2007, 0704.0927.
[33] D. Farmer,et al. Autocorrelation of ratios of L-functions , 2007, 0711.0718.