Omega results for cubic field counts via lower-order terms in the one-level density

In this paper we obtain a precise formula for the 1-level density of L-functions attached to non-Galois cubic Dedekind zeta functions. We find a secondary term which is unique to this context, in the sense that no lower-order term of this shape has appeared in previously studied families. The presence of this new term allows us to deduce an omega result for cubic field counting functions, under the assumption of the Generalized Riemann Hypothesis. We also investigate the associated L-functions Ratios Conjecture, and find that it does not predict this new lower-order term. Taking into account the secondary term in Roberts’ Conjecture, we refine the Ratios Conjecture to one which captures this new term. Finally, we show that any improvement in the exponent of the error term of the recent Bhargava–Taniguchi–Thorne cubic field counting estimate would imply that the best possible error term in the refined Ratios Conjecture is Oε(X− 1 3 ). This is in opposition with all previously studied families, in which the expected error in the Ratios Conjecture prediction for the 1-level density is Oε(X− 1 2 ).

[1]  Daniel Fiorilli,et al.  Low-lying zeros in families of holomorphic cusp forms: the weight aspect , 2019, 1911.08310.

[2]  David P. Roberts Density of cubic field discriminants , 2001, Math. Comput..

[3]  Daniel Fiorilli,et al.  Low-lying zeros of elliptic curve L-functions: Beyond the Ratios Conjecture , 2014, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  Daniel Fiorilli,et al.  Low-lying zeros of quadratic Dirichlet $L$ -functions: lower order terms for extended support , 2016, Compositio Mathematica.

[5]  P. Sarnak,et al.  Families of L -Functions and Their Symmetry , 2014, 1401.5507.

[6]  A. Yang Distribution problems associated to zeta functions and invariant theory , 2009 .

[7]  Karim Belabas,et al.  A fast algorithm to compute cubic fields , 1997, Math. Comput..

[8]  Steven J. Miller,et al.  A unitary test of the Ratios Conjecture , 2009, 0909.4916.

[9]  P. Sarnak,et al.  Zeroes of zeta functions and symmetry , 1999 .

[10]  Steven J. Miller One- and two-level densities for rational families of elliptic curves: evidence for the underlying group symmetries , 2004, Compositio Mathematica.

[11]  N. Snaith,et al.  Applications of the L‐functions ratios conjectures , 2005, math/0509480.

[12]  An orthogonal test of the L‐functions Ratios conjecture , 2008, 0805.4208.

[13]  H. Iwaniec,et al.  Analytic Number Theory , 2004 .

[14]  Peter Sarnak,et al.  Low lying zeros of families of L-functions , 1999, math/9901141.

[15]  Linear statistics of low-lying zeros of L-functions , 2002, math/0208230.

[16]  Andreas Weber,et al.  A Database for Number Fields , 1996, DISCO.

[17]  Peter Sarnak,et al.  Zeros of principal $L$-functions and random matrix theory , 1996 .

[18]  C. Pomerance,et al.  Error estimates for the Davenport-Heilbronn theorems , 2010 .

[19]  H. Iwaniec,et al.  Low-lying zeros of dihedral L-functions , 2003 .

[20]  H. Davenport Multiplicative Number Theory , 1967 .

[21]  Takashi Taniguchi,et al.  Secondary terms in counting functions for cubic fields , 2011, 1102.2914.

[22]  Jacob Tsimerman,et al.  On the Davenport–Heilbronn theorems and second order terms , 2010, 1005.0672.

[23]  Nicolas Templier,et al.  SATO–TATE EQUIDISTRIBUTION OF CERTAIN FAMILIES OF ARTIN $L$ -FUNCTIONS , 2015, Forum of Mathematics, Sigma.

[24]  Henry H. Kim,et al.  Low lying zeros of Artin $$L$$L-functions , 2014 .

[25]  Nicholas M. Katz,et al.  Random matrices, Frobenius eigenvalues, and monodromy , 1998 .

[26]  Michael O. Rubinstein,et al.  Low-lying zeros of L-functions and random matrix theory , 2001 .

[27]  Steven J. Miller,et al.  Surpassing the ratios conjecture in the 1-level density of Dirichlet L-functions , 2011, 1111.3896.

[28]  Henry H. Kim,et al.  n-Level Densities of Artin L-Functions , 2015 .

[29]  H. Iwaniec,et al.  The subconvexity problem for Artin L–functions , 2002 .

[30]  Nicolas Templier,et al.  Sato–Tate theorem for families and low-lying zeros of automorphic $$L$$L-functions , 2012, 1208.1945.

[31]  Daniel Fiorilli,et al.  Low-lying zeros of quadratic Dirichlet $L$-functions: A transition in the Ratios Conjecture , 2017, 1710.06834.

[32]  Steven J. Miller,et al.  A Symplectic Test of the L-Functions Ratios Conjecture , 2007, 0704.0927.

[33]  D. Farmer,et al.  Autocorrelation of ratios of L-functions , 2007, 0711.0718.