Galling guilds associated with Acacia dealbata and factors guiding selection of potential biological control agents.

The Australian tree Acacia dealbata Link (Mimosaceae) invades natural ecosystems in both the Northern and Southern Hemispheres, including areas beyond its natural range in Australia. Biological control is under development in South Africa using the seed-feeding curculionid Melanterius maculatus Lea. A diverse range of galling insects occur on A. dealbata in Australia, most exhibiting high levels of host specificity and niche partitioning within their host. Galling insects have successfully contributed to biocontrol of other Acacia species in South Africa. Australian galling insects from A. dealbata have considerable potential for adoption as novel or complementary biocontrol agents. Factors governing the selection of potential agents are considered in the context of impact on the host, efficacy and compatibility with the utilization of the host for timber, pulp, floriculture and fire-wood harvesting, particularly in resource-poor regions of the world. The potential for biological control of A. dealbata in invaded habitats in Australia is also discussed.

[1]  R. Adair,et al.  Gall-forming Cecidomyiidae from Acacias: Can New Parasitoid Assemblages be Predicted? , 2006 .

[2]  R. Askew The diversity of insect communities in leaf-mines and plant galls. , 1980 .

[3]  J. Hoffmann,et al.  Utilization of an unpredictable food source by Melanterius ventralis, a seed-feeding biological control agent of Acacia longifolia in South Africa , 2004, BioControl.

[4]  A. S. McClay,et al.  The role of pre-release efficacy assessment in selecting classical biological control agents for weeds—applying the Anna Karenina principle , 2005 .

[5]  J. Hoffmann,et al.  Biological control of invasive golden wattle trees (Acacia pycnantha) by a gall wasp, Trichilogaster sp. (Hymenoptera: Pteromalidae), in South Africa , 2002 .

[6]  M. D. Wit,et al.  Conflicts of Interest in Environmental Management: Estimating the Costs and Benefits of a Tree Invasion , 2001, Biological Invasions.

[7]  G. B. Dennill,et al.  Why a gall former can be a good biocontrol agent: the gall wasp Trichilogaster acaciaelongifoliae and the weed Acacia longifolia , 1988 .

[8]  P. Price,et al.  Parasitoid pressure and the radiation of a gallforming group (Cecidomyiidae: Asphondylia spp.) on creosote bush (Larrea tridentata) , 1989, Oecologia.

[9]  D. Burrows,et al.  The rapid suppression of the growth of Melaleuca quinquenervia saplings in Australia by insects. , 1993 .

[10]  K. Dhileepan Acacia nilotica ssp. indica (L.) Willd. ex Del. (Mimosaceae) , 2009 .

[11]  M. Cramer,et al.  Photosynthesis and sink activity of wasp-induced galls in Acacia pycnantha. , 2006, Ecology.

[12]  R. P. Randall,et al.  A Global Compendium of Weeds , 2002 .

[13]  C. Schaefer,et al.  Gall-inducing arthropods used in the biological control of weeds. , 2005 .

[14]  M. Julien,et al.  Multiple-species introductions of biological control agents against weeds: look before you leap. , 2008 .

[15]  R. Adair Biological control of Australian native plants, in Australia, with an emphasis on acacias , 2008, Muelleria: An Australian Journal of Botany.

[16]  G. Marks,et al.  Tree diseases in Victoria. , 1982 .

[17]  R. Adair Seed-reducing Cecidomyiidae as potential biological control agents for invasive Australian wattles in South Africa, particularly Acacia mearnsii and A. cyclops , 2004 .

[18]  D. C. Le Maitre,et al.  Invasive alien trees and water resources in South Africa: case studies of the costs and benefits of management , 2002 .

[19]  J. Hoffmann,et al.  The incidence of parasitism in Trichilogaster acaciaelongifoliae (Froggatt) (Hymenoptera: Pteromalidae), a gall-forming biological control agent of Acacia longifolia (Andr.) Willd. (Fabaceae) in South Africa. , 1995 .

[20]  D. Richardson,et al.  A proposed classification of invasive alien plant species in South Africa: towards prioritizing species and areas for management action. , 2004 .

[21]  S. Raghu,et al.  A systematic approach to biological control agent exploration and prioritisation for prickly acacia (Acacia nilotica ssp. indica) , 2006 .

[22]  D. Briese Can an a priori strategy be developed for biological control? The case of Onopordum spp. thistles in Australia , 2006 .

[23]  R. Hnatiuk,et al.  Phytogeography of Acacia in Australia in Relation to Climate and Species-Richness , 1988 .

[24]  S. Jacobs,et al.  Native Trees and Shrubs of South-Eastern Australia , 1983 .

[25]  T. Olckers,et al.  The contribution of the gall-forming rust fungus Uromycladium tepperianum (Sacc.) McAlp. to the biological control of Acacia saligna (Labill.) Wendl. (Fabaceae) in South Africa. , 1999 .

[26]  Christopher F. L. Saarnak,et al.  Australian wattle species in the Drakensberg region of South Africa - An invasive alien or a natural resource? , 2005 .

[27]  John R. U. Wilson,et al.  Refining the process of agent selection through understanding plant demography and plant response to herbivory , 2006 .

[28]  A. Young,et al.  Reproductive constraints for the long-term persistence of fragmented Acacia dealbata (Mimosaceae) populations in southeast Australia , 2006 .

[29]  D. Donnelly,et al.  Insect agents used for the biological control of Australian Acacia species and Paraserianthes lophantha (Willd.) Nielsen (Fabaceae) in South Africa , 1999 .

[30]  T. Ananthakrishnan Biology of gall insects. , 1984 .

[31]  A. Sheppard,et al.  Top 20 environmental weeds for classical biological control in Europe: a review of opportunities, regulations and other barriers to adoption. , 2006 .

[32]  D. Hartnett,et al.  The effects of stem gall insects on life history patterns in Solidago canadensis L. (Compositae) , 1979 .