Issues in the numerical solution of evolutionary delay differential equations

Delay differential equations are of sufficient importance in modelling real-life phenomena to merit the attention of numerical analysts. In this paper, we discuss key features of delay differential equations (DDEs) and consider the main issues to be addressed when constructing robust numerical codes for their solution. We provide an introduction to the existing literature and numerical codes, and in particular we indicate the approaches adopted by the authors. We also indicate some of the unresolved issues in the numerical solution of DDEs.

[1]  Zdzislaw Jackiewicz,et al.  Waveform Relaxation Methods for Functional Differential Systems of Neutral Type , 1997 .

[2]  Wayne H. Enright,et al.  Interpolants for Runge-Kutta formulas , 1986, TOMS.

[3]  A. Iserles,et al.  Stability of the discretized pantograph differential equation , 1993 .

[4]  Marino Zennaro,et al.  Numerical solution of delay differential equations by uniform corrections to an implicit Runge-Kutta method , 1985 .

[5]  Desmond J. Higham,et al.  Highly continuous Runge-Kutta interpolants , 1991, TOMS.

[6]  Ben P. Sommeijer,et al.  Stability in linear multistep methods for pure delay equations , 1983 .

[7]  Christopher T. H. Baker,et al.  The tracking of derivative discontinuities in systems of delay-differential equations , 1992 .

[8]  David R Will,et al.  New Stepsize Estimators for Linear Multistep Methods Department of Mathematics New Stepsize Estimators for Linear Multistep Methods , 1994 .

[9]  W. H. Enright A new error-control for initial value solvers , 1989 .

[10]  C. Baker,et al.  Propositions on the robustness of multistep formulae , 1996 .

[11]  R. D. Driver,et al.  Ordinary and Delay Differential Equations , 1977 .

[12]  Christopher T. H. Baker,et al.  Parallel continuous Runge-Kutta methods and vanishing lag delay differential equations , 1993, Adv. Comput. Math..

[13]  Kevin Burrage,et al.  Parallel and sequential methods for ordinary differential equations , 1995, Numerical analysis and scientific computation.

[14]  H. Banks,et al.  Spline approximations for functional differential equations , 1979 .

[15]  S. Thompson,et al.  Software for the numerical solution of systems of functional differential equations with state-dependent delays , 1992 .

[16]  Uri M. Ascher,et al.  The numerical solution of delay-differential-algebraic equations of retarded and neutral type , 1995 .

[17]  K. J. in 't Hout,et al.  A new interpolation procedure for adapting Runge-Kutta methods to delay differential equations , 1992 .

[18]  H. J. Pesch,et al.  Numerical treatment of delay differential equations by Hermite Interpolation , 1981 .

[19]  John L. Casti,et al.  Introduction to the theory and application of differential equations with deviating arguments , 1973 .

[20]  Hans J. Stetter Numerische Lösung von Differentialgleichungen mit nacheilendem Argument , 1965 .

[21]  Ben P. Sommeijer,et al.  Numerical integration of retarded differential equations with periodic solutions , 1985 .

[22]  Kevin Burrage,et al.  An implementation of singly-implicit Runge-Kutta methods , 1980 .

[23]  J. Kato Stability in functional differential equations , 1980 .

[24]  Alan Feldstein,et al.  High Order Methods for State-Dependent Delay Differential Equations with Nonsmooth Solutions , 1984 .

[25]  A. Iserles Stability and Dynamics of Numerical Methods for Nonlinear Ordinary Differential Equations , 1990 .

[26]  M. Zennaro Natural continuous extensions of Runge-Kutta methods , 1986 .

[27]  John C. Butcher The adaptation of STRIDE to delay differential equations , 1992 .

[28]  S. Filippi,et al.  Stepsize control for delay differential equations using a pair of formulae , 1989 .

[29]  Christopher A. H. Paul,et al.  Developing a delay differential equation solver , 1992 .

[30]  J. B. McLeod,et al.  The functional-differential equation $y'\left( x \right) = ay\left( {\lambda x} \right) + by\left( x \right)$ , 1971 .

[31]  H. Antosiewicz,et al.  Differential Equations: Stability, Oscillations, Time Lags , 1967 .

[32]  V. Barwell,et al.  Special stability problems for functional differential equations , 1975 .

[33]  Marino Zennaro,et al.  Derivation of Efficient, Continuous, Explicit Runge-Kutta Methods , 1992, SIAM J. Sci. Comput..

[34]  V. Kolmanovskii,et al.  Applied Theory of Functional Differential Equations , 1992 .

[35]  John M. Danskin,et al.  A Survey of the Mathematical Theory of Time-Lag, Retarded Control, and Hereditary Processes , 1955 .

[36]  W. H. Enright Analysis of error control strategies for continuous Runge-Kutta methods , 1989 .

[37]  Colin W. Cryer,et al.  NUMERICAL METHODS FOR FUNCTIONAL DIFFERENTIAL EQUATIONS , 1972 .

[38]  K. Gopalsamy Stability and Oscillations in Delay Differential Equations of Population Dynamics , 1992 .

[39]  Kenneth W. Neves Automatic Integration of Functional Differential Equations: An Approach , 1975, TOMS.

[40]  Herbert Arndt Numerical solution of retarded initial value problems: Local and global error and stepsize control , 1984 .

[41]  Peter Linz,et al.  Linear Multistep Methods for Volterra Integro-Differential Equations , 1969, JACM.

[42]  G. J. Cooper,et al.  On the implementation of singly implicit Runge-Kutta methods , 1991 .

[43]  Christopher T. H. Baker,et al.  DELSOL: a numerical code for the solution of systems of delay-differential equations , 1992 .

[44]  Jesper Oppelstrup,et al.  The RKFHB4 method for delay — Differential equations , 1978 .

[45]  Alan Feldstein,et al.  Numerical Methods for Nonlinear Volterra Integro-Differential Equations , 1974 .

[46]  S. Lefschetz,et al.  Qualitative Methods in Mathematical Analysis , 1964 .

[47]  J. Hale Theory of Functional Differential Equations , 1977 .

[48]  Robert E. Kalaba,et al.  Numerical integration of a differential-difference equation with a decreasing time-lag , 1965, CACM.

[49]  Lucio Tavernini,et al.  One-Step Methods for the Numerical Solution of Volterra Functional Differential Equations , 1971 .

[50]  Marino Zennaro,et al.  P-stability properties of Runge-Kutta methods for delay differential equations , 1986 .

[51]  David R. Hill A new class of one-step methods for the solution of Volterra functional differential equations , 1974 .

[52]  M. Zennaro Natural continuous extensions of Runge-Kutta formulas , 1986 .

[53]  Zdzislaw Jackiewicz,et al.  The Numerical Integration of Neutral Functional-Differential Equations by Fully Implicit One-Step Methods , 1995 .

[54]  Yang Kuang,et al.  Slowly oscillating periodic solutions of autonomous state-dependent delay equations , 1992 .

[55]  Lawrence F. Wiederholt,et al.  Stability of multistep methods for delay differential equations , 1976 .

[56]  Karl Kunisch,et al.  Spline Approximations for Neutral Functional Differential Equations , 1981 .

[57]  L. Shampine Interpolation for Runge–Kutta Methods , 1985 .

[58]  Alan Feldstein,et al.  Characterization of jump discontinuities for state dependent delay differential equations , 1976 .

[59]  W. H. Enright,et al.  The relative efficiency of alternative defect control schemes for high-order continuous Runge-Kutta formulas , 1993 .

[60]  Christopher T. H. Baker,et al.  A Global Convergence Theorem for a Class of Parallel Continuous Explicit Runge--Kutta Methods and Vanishing Lag Delay Differential Equations , 1996 .

[61]  E. M. Wright,et al.  On a Sequence Defined by a Non‐Linear Recurrence Formula , 1945 .

[62]  Robert E. Kalaba,et al.  Mathematical experimentation in time-lag modulation , 1966, CACM.

[63]  J. B. McLeod The functional-differential equation y′(x)=ay(λx)+by(x) and generalisations , 1972 .

[64]  L. F. Shampine,et al.  The Effect of Changing the Stepsize in Linear Multistep Codes , 1989 .

[65]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .

[66]  Christopher T. H. Baker,et al.  Computing stability regions—Runge-Kutta methods for delay differential equations , 1994 .

[67]  Christopher T. H. Baker,et al.  Stepsize control and continuity consistency for state-dependent delay-differential equations , 1994 .

[68]  Ben P. Sommeijer,et al.  On the Stability of Predictor-Corrector Methods for Parabolic Equations with Delay , 1984 .

[69]  M. N. Spijker,et al.  The stability of the θ-methods in the numerical solution of delay differential equations , 1990 .

[70]  Ben P. Sommeijer,et al.  Linear Multistep Methods with Reduced Truncation Error for Periodic Initial-value Problems , 1984 .

[71]  M. N. Spijker,et al.  Stability analysis of numerical methods for delay differential equations , 1991 .

[72]  J. Hale Functional Differential Equations , 1971 .

[73]  Alfredo Bellen,et al.  One-step collocation for delay differential equations , 1984 .