The spectral radius of graphs with no intersecting odd cycles

Let Hs,k be the graph defined by intersecting s triangles and k cycles of odd lengths at least five in exactly one common vertex. Recently, Hou, Qiu and Liu [Discrete Math. 341 (2018) 126–137], and Yuan [J. Graph Theory 89 (2018), no. 1, 26–39] determined independently the maximum number of edges in an n-vertex graph that does not contain Hs,k as a subgraph. In this paper, we determine the graphs of order n that attain the maximum spectral radius among all graphs containing no Hs,k for n large enough.

[1]  G. Walter,et al.  Graphs and Matrices , 1999 .

[2]  Miklós Simonovits,et al.  Paul Erdős' Influence on Extremal Graph Theory , 2013, The Mathematics of Paul Erdős II.

[3]  L. Moser,et al.  AN EXTREMAL PROBLEM IN GRAPH THEORY , 2001 .

[4]  László Babai,et al.  Spectral Extrema for Graphs: The Zarankiewicz Problem , 2009, Electron. J. Comb..

[5]  Zoltán Füredi,et al.  On the Number of Edges of Quadrilateral-Free Graphs , 1996, J. Comb. Theory, Ser. B.

[6]  H. L. Abbott,et al.  Intersection Theorems for Systems of Sets , 1972, J. Comb. Theory, Ser. A.

[7]  Noga Alon,et al.  Turán Numbers of Bipartite Graphs and Related Ramsey-Type Questions , 2003, Combinatorics, Probability and Computing.

[8]  D. Conlon,et al.  On the Extremal Number of Subdivisions , 2018, International Mathematics Research Notices.

[9]  Zoltán Füredi,et al.  An Upper Bound on Zarankiewicz' Problem , 1996, Combinatorics, Probability and Computing.

[10]  Zoltán Füredi,et al.  Extremal Graphs for Intersecting Triangles , 1995, J. Comb. Theory, Ser. B.

[11]  Vladimir Nikiforov,et al.  The spectral radius of graphs without paths and cycles of specified length , 2009, 0903.5351.

[12]  M. Simonovits,et al.  The History of Degenerate (Bipartite) Extremal Graph Problems , 2013, 1306.5167.

[13]  Vladimir Nikiforov,et al.  Some Inequalities for the Largest Eigenvalue of a Graph , 2002, Combinatorics, Probability and Computing.

[14]  Vladimir Nikiforov,et al.  Spectral Saturation: Inverting the Spectral Turán Theorem , 2007, Electron. J. Comb..

[15]  Xiaodong Zhang,et al.  The spectral radius of graphs with no intersecting triangles , 2019, 1911.13082.

[16]  P. Erdos,et al.  A LIMIT THEOREM IN GRAPH THEORY , 1966 .

[17]  P. Erdös On the structure of linear graphs , 1946 .

[18]  V. Sós,et al.  On a problem of K. Zarankiewicz , 1954 .

[19]  P. Erdgs,et al.  ON MAXIMAL PATHS AND CIRCUITS OF GRAPHS , 2002 .

[20]  David Conlon,et al.  More on the Extremal Number of Subdivisions , 2019, Combinatorica.

[21]  Fuzhen Zhang Matrix Theory: Basic Results and Techniques , 1999 .

[22]  Long-Tu Yuan,et al.  Extremal graphs for the k‐flower , 2018, J. Graph Theory.

[23]  David Conlon,et al.  Graph removal lemmas , 2012, Surveys in Combinatorics.

[24]  Zoltán Füredi,et al.  New Asymptotics for Bipartite Turán Numbers , 1996, J. Comb. Theory, Ser. A.

[25]  A. Shapira,et al.  Extremal Graph Theory , 2013 .

[26]  Yu Qiu,et al.  Extremal Graph for Intersecting Odd Cycles , 2016, Electron. J. Comb..

[27]  Yu Qiu,et al.  Turán number and decomposition number of intersecting odd cycles , 2018, Discret. Math..

[28]  Vasek Chvátal Degrees and matchings , 1976 .

[29]  Vladimir Nikiforov,et al.  A Spectral Erdős–Stone–Bollobás Theorem , 2007, Combinatorics, Probability and Computing.

[30]  B. Wang,et al.  Proof of a conjecture on the spectral radius of C4-free graphs , 2012 .

[31]  V. Nikiforov A contribution to the Zarankiewicz problem , 2009, 0903.5350.

[32]  Vladimir Nikiforov,et al.  Bounds on graph eigenvalues II , 2006, math/0612461.

[33]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[34]  Vladimir Nikiforov,et al.  Spectral radius and Hamiltonicity of graphs , 2009, 0903.5353.

[35]  Zoltán Füredi,et al.  A proof of the stability of extremal graphs, Simonovits' stability from Szemerédi's regularity , 2015, J. Comb. Theory, Ser. B.

[36]  V. Nikiforov Some new results in extremal graph theory , 2011, 1107.1121.

[37]  Yanhua Zhao,et al.  The signless Laplacian spectral radius of graphs with no intersecting triangles , 2020, 2009.04738.

[38]  Michael Tait,et al.  The spectral radius of graphs with no odd wheels , 2022, Eur. J. Comb..

[39]  Zoltán Füredi,et al.  On a Turán type problem of Erdös , 1991, Comb..

[40]  Herbert S. Wilf,et al.  Spectral bounds for the clique and independence numbers of graphs , 1986, J. Comb. Theory, Ser. B.

[41]  Jacob Fox,et al.  A new proof of the graph removal lemma , 2010, ArXiv.